
 

Northumbria University 
 

School of CEIS 
 

 

Masters Programme in  

Computing 

 

Individual Project 

 
Student Dissertation 

2007/2008 

 

 

 

NAME: MOREY-CHAISEMARTIN Nicolas 

 



 

 ii 

The copyright of this dissertation rests with the author. No part of it should 

be published without his/her prior written consent and information derived from 

it should be acknowledged. 

 

 

 

 

 

 

 
I certify that the work contained in this report is the sole work of the author 

except where indicated. All material that has been taken from other sources has 

been clearly acknowledged. Quotations from other sources have been clearly 

marked, using quotation marks or a block quote. 

 

 

 

 

 

 

 

 

 

Signature __________________________  Date ______________ 

 

 



 

 i 

Dissertation title: 

 

 

 

 

 

 

 

 

A Hard Real-Time Kernel for a 

Heterogeneous Multicore Architecture: 

The Cell Broadband Engine 
  



 

 ii 

Acknowledgements 

 

 

 

 

 

 

 

 

I would like to thank my supervisor, Adrian P. Robson, for helping me through 

my project and refocusing me when needed. 

I also would like to thank, the people from IBM, and Ruben Niederhagen from 

Aachen University for their advices and numerous ideas. 

Last but not least, I would like to thank my family for their support and their 

help brining the final touch to my dissertation. 



 

 iii 

Abstract 

 

In this dissertation, a design of a hard real-time kernel for the Cell Broadband 

Engine is proposed. This design focuses on the problems due to the heterogeneous 

multicore architecture on the Cell. Task allocation, scheduling and synchronization 

algorithms are discussed to maximize the kernel performances. A particular attention 

has been ported to the semaphores as synchronization is a complex problem in a 

distributed environment. 

A proof of concept, Virt-K, has been implemented over Linux to demonstrate 

the efficiency of the design. Timing analysis and performances measurements have 

been realized using Virt-K to localize the weak points of the design. Based on the 

performances, the design flaws are discussed, solutions are proposed and 

enhancements suggested. 

It is concluded by proving that a soft real-time kernel can be run on the Cell 

Broadband Engine but the results are not conclusive for hard real-time kernels due to 

unbounded semaphore acquisition time.  Suggestions on further research axes are 

proposed. 
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1. Introduction 

 

In  the  late  years,  microprocessor  founders  have  had  trouble  following  the 

 Moore  Law.  Not  only  they  have  had   to  face  physical  problems  due  to  the 

 size  of  transistors  but  also  what  is  called  the  “Memory  Wall”  [88]  due  to  the 

 memory  latency  and  cache  misses.  Numerous  new  ideas  have  been  tried  to 

 solve  this  problem  but  only  few  were successful.  Classical  multicore 

 architectures,  like  Intel  Core  Duo,  have  managed  to  achieve  greater 

 performances  but  memory  accesses  are  being  more  critical  than  ever.   

However  as  described  in  [35], STI,  the  union  of  Sony,  Toshiba  and  IBM, 

 has  worked  since  2000  on  this  problems  and  has  found  a  working  solution: 

 the  Cell  Broadband  Engine,  commonly  called  Cell.  The  results  of  the  Cell  will 

not  be  discussed  here  but  they  can  be  found  in  [86] .   

The Cell thus has many interesting aspects. It has been made as a replacement 

for personal computers architectures (x86, x86_64) but is also a powerful parallel 

calculator. It is being currently used in the Playstation 3, but also in multiprocessor 

computers and soon in clusters. 

Parallel computing has been a research subject for many years now, but its 

application to real-time systems has always been problematic as many processors 

often imply large power consumption.  The Cell may change this as IBM clearly 

indicates in its official articles, [35] among others, “The Cell processor should provide 

extensive real-time support”. Further references to real-time support can also be found 

in the technical documentation of the Cell (i.e. [29]).  STI has also announced, 

according  to [80], a  lighter  version  of  the  Cell  for  embedded  hardware  and 

 real‐time  usage 

The few research done on real-time for the Cell have been on efficient 

computing algorithm as MPEG compression, ray tracing, terrain rendering, but none 

of them has clearly answered the question of the feasibility of a real-time operating 

system for the Cell. 
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1.1 Hypothesis 

 

The hypothesis of this project is: 

“Can an efficient hard real-time kernel be implemented on the Cell?” 

 

 

1.2 Aims 

 

The aim of this project is to prove the hypothesis. A hard real-time kernel will 

be designed and then implement as a virtual kernel for the Cell, running as a Linux 

program. 

The two criteria to prove the hypothesis are the feasibility of a real-time kernel, 

and its efficiency: 

- The feasibility can be seen through the possibility of running processes, 

synchronizing and scheduling them successfully. 

- The efficiency criterion is mostly the predictability of the kernel. All the 

common kernel tasks should have predictable runtimes. 

 

1.3 Objectives 

 

• Research and discuss Linux implementation on SPEs1

• Specify and develop a virtual kernel using Linux as a non real-time hypervisor. 

. 

• Research, design and implement a scheduling algorithm to manage the SPEs 

• Research, design and implement semaphores for the SPEs 

• Test system performances and compare to existing real-time kernels. 

• Research and discuss possible algorithms to achieve higher performances and 

more generic purpose. 

 

 

                                                 
1 SPE stands for Synergistic Processor Element. See Chapter 2.1.3 for more details. 
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1.4 Dissertation organization 

 

In Chapter 2, the subject is introduced with an overview of the Cell Broadband 

Engine and of real-time kernels to define the environment of the project and ease the 

understanding of the work done. 

In Chapter 3, a design of a hard real-time kernel for Cell Broadband Engine is 

proposed. The design focuses on high performance scheduling and synchronization.  

In Chapter 4, the implementation of the proof of concept is discussed. An 

overview of the software architecture and its specificity are given. 

In Chapter 5, a timing analysis of software is provided and confirmed by a 

practical performance tests. 

In Chapter 6, the weak points of the design are studied. Solutions and 

enhancements are suggested. 

In Chapter 7, conclusions from the previous analysis are given and new research 

axes are proposed. 
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2. Cell Broadband Engine and Real-Time Kernel 

 

To fully understand the implication of this project, a small background on the 

Cell processor and real-time kernel is needed. 

 

2.1 The Cell Broadband Engine Architecture 

 

The Cell Broadband Engine Architecture (commonly called CBEA) has been 

standardized by IBM in 2005. Its first implementation is the Cell Broadband Engine 

(called CBE) which is the support platform of this project. 

The development of the CBEA itself started in 2000 by the union of Sony, 

Toshiba and IBM in order to solve the common problems of current architectures 

(x86, Itanium). The CBE was developed at the same time as an example of the CBEA 

to be implemented in the Playstation 3. The following description will be focused on 

the CBE as it is currently the only implementation of the CBEA. The main difference, 

concerning this project, is that the CBEA does not specify a number of processing 

elements. Processor with many processing elements may appear for high-

computational needs, but also smaller ones for embedded applications. 

 

2.1.1 The Cell Broadband Engine 

 

The Cell, as described by [32], consists of 9 cores on a single chip. One of them 

is the PPE (PowerPC Processor Element), and the other eight are advanced 

computational units called SPE (Synergistic Processor Units). All these processors are 

linked by a high data-rate bus called EIB (Element Interconnect Bus). The SPEs and 

the EIB are the keys to the Cell success as they provide a considerable amount of 

computational power without neglecting the memory wall problem. 
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Figure 2-1 - The Cell Broadband Engine 

 

2.1.2 PowerPC Processor Element (PPE) 

 

According to [29], the PPE being the central element of the Cell is in fact an 

enhanced PowerPC 64bits core. Thus, using well known technology, STI has 

guaranteed some compatibility with existing softwares.  

In the current Linux version running on the Cell, the PPE is the only core used 

by default. However softwares can choose to send tasks to the SPEs. The problem 

with this solution is that, although all the previous PowerPC software can be 

executed without any changes, a lot of the SPE computation time is wasted as few 

software are using them. 

The main role of the PPE, fixed by the design [32], is to host the operating 

systems as it has full access to all hardware.  
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Figure 2-2 - Power Processing Element (PPE) 

 

2.1.3 Synergistic Processor Elements (SPE) 

 

The SPE is a highly advanced 64 bits computational unit using SIMD (Single 

Instruction Multiple Data).  

The main difference between PPE and SPE, more than the restricted instruction 

set of the SPE, is the way they access memory [27]. Where the PPE uses the same 

standard access (cache L1 and L2) as other processors, the SPE has its own local 

memory. As  [29] indicates, each SPE owns a 256 kilobytes Local Store.  

Another critical difference is that a PPE accesses the memory “on the fly” which 

means the data are retrieved from memory to the cache at the moment they are 

needed. However, the SPE owns a MFC (Memory Flow Controller) which can retrieve 

data asynchronously through DMA transfers. The MFC is given a list of memory area 

to load or store and will do it as soon as the hardware makes it possible. Therefore, 

the SPE can pre-fetch the data it will need before it actually needs it. This may seems 

really simple, but it is a solution to the memory wall as mentioned earlier. The 
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memory latency is not a real problem anymore as the SPE does not have to wait for 

its data to keep running. To be more precise, data being prefetch, the program will 

not encounter cache misses, and then run faster. In the case of a single process 

running on a SPE (isolated and non-pre-empted), it is possible to calculate exactly 

response time within the SPE. As every instruction has a know execution  time and so 

does the Local Store access, the execution time of a function can be calculated at a 

SPE cycle precision. 

Moreover, it is fully possible to imagine a pre-allocation of data in the Local 

Store having a task ready to run as soon as a signal (intern or external event) arrives, 

avoiding a costly context switch. By sharing the Local Store, several processes could 

be stored at the same time. Context switch in this case would only require saving the 

different register. 

For a soft real-time usage, the same principle could be applied by adding 

paging functions to send back some processes to the main memory if needed. 

Context switch would still be less costly than copying the full Local Store to the main 

memory and the average response time would stay quite low.  

 
Figure 2-3 - Synergistic Processor Element (SPE) 



 

 8 

More than the Local Store, each SPE is provided an Atomic Cache Unit (ACU) to 

manage concurrent access to the main memory. The ACU acts like cache memory. If 

a memory area is in the ACU of a SPE, and if another SPE tries to access it, it will 

retrieve the value stored in the other SPE ACU. Concurrent modifications can be 

detected by hardware as a “dirty” bit is set when trying to store back in memory a 

value which has been modified by another SPE. 

The SPE are also provided with three 32bits mailboxes.  Two of them are 

outbound, one for message, the other for interruption and can send message to the 

PPE, other SPE or even peripherals. The third one is a four entry inbound mailbox to 

receive messages from these other elements. 

 

 

2.1.4 Element Interconnect Bus (EIB) 

 

To connect all the elements of the CBE, an advanced high data-rate bus has been 

designed. This bus, called Element Interconnect Bus or EIB, is in fact composed of 4 

16-bytes wide circular unidirectional channels which counter-rotate in pairs. 

These channels can execute up to three memory transactions at once if the 

configuration allows it. These channels work in a similar way to a token-ring network. 

The EIB is optimized to transfer large amount of data as each transaction transfers 

128bytes (8 transfers on 16bytes wide). The concurrent accesses to the bus are 

managed by an arbiter. In the current CBE implementation, the first SPE has the 

priority on the second, the second on the third, etc. 

In theory the EIB can achieve a peak data bandwidth of 204.8GB/s. A peak 

bandwidth of 197GB/s has been achieved by IBM [14]. 
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Figure 2-4 - Element Interconnect Bus Topology 

 

2.1.5 Other Elements 

 

For its external communications, the CBE uses two Flex IO interfaces and a 

XDR memory controller. 

The FlexIO interface is a 48bits bus running at double clock speed. Their 

theoretical bandwidth is 76.8GB/s, about ten times faster than an AMD64. This bus is 

dynamically configurable and eases the use of the Cell in different environments. 

Moreover, one of the two FlexIO interface can be used to interconnect CBE. Theses 

connexions can either be done directly between two CBE or using a BIF (CBE 

Interface Protocol) switch. 

 
Figure 2-5 - Four CBE System 
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The CBE was designed to use XDR Ram as memory, although the latest CBE version, 

used in the Roadrunner cluster, is compatible with DDR. The advantages and 

drawbacks of both memory will not be discussed here.  

 

2.1.6 Further details 

 

The CBE and its new architecture, first produced in 2005, is still a subject of 

research. 

More than looking for efficient algorithm using its full potential as [37],[58] and 

[6] ,  many laboratories are working on possible implementations and how to 

enhance the current Linux for CBE. 

[39] proposes an implementation of MPI (Message Passing Interface) on the 

CBE. MPI is necessary to work efficiently on multiprocessor Cell computers.  They 

have implement blocking point-to-point communications on the current Linux for 

that. But more than that, the techniques they used are interesting for SPE 

synchronisation (mutexes semaphores). It will be discussed in more details later in 

this review.  
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Figure 2-6 - Photo of the Cell Broadband Engine 
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2.2 Real-Time Kernel 

 

Real-time kernels are a subfamily of kernels. A kernel is a transparent 

“program” that manages the entire system.  

When a computer is started, an operating system is loaded. This system can be 

user-oriented as Linux, Windows or Solaris, real-time as eCos or µC/OS II, database-

oriented, and so on.  Linux is a specific case as some variations of the original kernel 

have been modified to fit real-time purposes. 

Any set of systems with their own constraints may have a specific operating 

system fitting their needs. An operating system is not only a set of applications 

available to the end-user whether it is human or software. An operating system also 

includes a kernel.  

The kernel configures the CPU, the peripherals, allows processes to 

communicate between each other, and allows network communication. Moreover, the 

kernel allows starting processes, managing, synchronizing and stopping them. A 

kernel is the key to have a functional multi-programmed system. 

Kernels can be sorted in two categories. A kernel can be monolithic, meaning 

that all the functions it provides are included in the kernel itself. Or it can be a 

microkernel where only the most basic functions are provided by the kernel. The other 

ones are provided through higher-level programs. There have been endless debates 

about which type of kernel to use and no clear verdict. For more information about 

both types of kernel, the debate [79] between A.S. Tanenbaum (creator of Minix) and 

Linus Torvald (creator of Linux) is of the most interesting.  

This is not a problem here as this choice is not necessary for the lower level of 

the kernel which is the main concern of this project. 

 

There are three elements in a kernel that are necessary and sufficient to run a 

multiprogrammed system: 

- Task  management functions, to create and allocate processes 

- A scheduler to manage the process ordering on the CPU 

- Synchronization functions so that the processes can exchange information. 
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To get back to real-time kernels, they are slightly different from the other 

kernels. The problem is that people strongly disagree on the exact definition of a real-

time kernel. But the most important point is that it should be predictable. This means 

that every action must be realized within a specified deadline provided by the kernel 

manufacturer. It allows the developers to predict the worst-case behavior of the 

system and ensure that even if things go as slow as they can, their task will be 

completed within the deadlines. 

 

2.2.1 Task Management 

 

To run applications, it is necessary at first to create them in the kernel. When a 

process is created (often by another process), it needs to be registered within the 

kernel and be allocated some memory space. The process data and its instructions 

must also be loaded in memory. This is called task or process allocation. 

When these steps have been fulfilled, the process can be started. Then, the 

process may be running (in running state) but not actually on the CPU. This is 

explained in 2.2.2. 

 

2.2.2 Real-Time scheduling 

 

The key element of any kernel, and most critical for a hard real-time one, is the 

scheduler. A scheduler is a kernel function that manages the execution of multiple 

processes on one or more CPU. 

In a regular personal computer, there is between 1 and 4 CPU, so 1 to 4 

processes can run simultaneously. However, there is always dozens of processes 

running concurrently, the GUI, power management, applications, games… They 

cannot obviously all run on a CPU at the same time. This is where the scheduler plays 

its role. It manages the processes list, affect some to CPU, and sometimes preempt 

(remove it from the CPU, saving its current state) them to run other ones.  

There are many scheduling algorithms depending on the type of system they 

will be used for.  A database system (I/O oriented) will not be scheduled the same way 

as a system calculating Pi decimal. 
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 Interactive systems (Windows, Linux…) tend to have fair scheduling policy. It 

means that they try to maximize the system performances over time without keeping a 

process too long away from the CPU, which would look like a really slow application 

from a user point of view. If a process has been running on a CPU for more than a 

specified time, the kernel preempt it, store it with the other processes waiting for CPU 

time, and choose another one to start. 

In most of the real-time operating systems, interactivity is not a concern. A real-

time scheduler focuses on fulfilling the processes functions within their deadlines. As 

deadlines and computation times are rarely available to the scheduler, the scheduler 

must always run the highest priority process. Thus if a high priority process runs for a 

few minutes, the lower priority processes will not obtain any CPU time and will seem 

frozen. In certain RT kernels, it is possible to run several processes with the same 

priority level. In these cases, they often share CPU time, using round-robin or other 

equivalent algorithms. 

To be able to manage processes, the scheduler needs to have some information 

about them: its address in memory, where is store the execution code, its data, its 

priority, and most importantly its state. A process is not necessary running or ready to 

run. A process may have been created, but not yet started as its information is still 

being filled. A process can also be waiting for a resource, or synchronization, and thus 

running it would be a waste of time.  

 

 

2.2.3 Synchronization function 

 

A kernel has to provide synchronization function so processes can exchange 

information between each other.  

On personal computers, it seems that processes are running simultaneously on the 

CPU as it is possible to work in a text editor, while listening to music and copying 

file. The sensation is due to the scheduler which allows processes to obtain a CPU 

time slice at a high frequency. Thus even if two processes have the same number of 

instructions between two synchronization points, it is highly probable that they will 

not pass them at the same time, except if they use synchronization functions provided 
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by the kernel. Some kernels provide barriers where a process will stop until a specific 

event is received.  

Another type of necessary synchronization is to manage simultaneous access to 

shared data in memory. The classic example of the cash point [78] illustrates perfectly 

this need. 

Depending on the kernel theses functions can differ. Their numbers are limited 

but they are not necessary all available. At least, one mutual exclusion function is 

necessary (semaphores, mutexes or spin-lock) to be able to run several tasks with 

shared data. 

Note that the kernel itself may use these synchronization functions, as in multi-

processor systems, several access to a critical kernel code section can be attempted. 
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3. A Kernel Architecture for the CBE 

 

The main focus of this chapter is to define a theoretical implementation of the 

kernel for the Cell. Efficient algorithms will be described although they may not be 

implemented in this project. 

 

3.1 General design 

 

Symmetrical Multi-Processing is the most common approach on multiprocessor 

systems. [15] has shown that it is possible to develop SMP kernel in heterogeneous 

environment. It may be possible to run a SMP kernel on the CBE however 

performances would not be so good. 

The SPEs and their Local Stores are the strength of the CBEA regarding 

performances and predictability. However, they may introduce extremely long context 

switch time. In a regular SMP kernel, all the system calls are handled by the processor 

the task is running on, after a context switch saving the process data and loading the 

kernel code. On the CBE, this approach means, depending on task allocation and LS 

management, that the LS would have to be transferred completely to the memory and 

back at every system call. This means at least 512k bytes transferred on each system 

call, plus the kernel code that needs to be loaded. With statically defined tasks, it may 

not be necessary to transfer all the LS back and forth each time. The transfer size 

could be reduced to the used size in the LS. 

The SMP approach thus does not fit the Cell at all for a hard real-time kernel. 

The idea of this project is to let the SPEs run computational task while the PPE 

runs the kernel. The kernel being the only process running on the PPE would then 

have small response time, and would be able to run complex algorithm for scheduling 

if needed.  
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Figure 3-1 - Kernel Overview 
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3.2 Task Allocation 

 

One of the first concerns in designing the kernel is the tasks or processes. The 

way they are designed will strongly influence the scheduling and synchronization 

algorithms.   

As said earlier, the SPE Local Stores are problematic for memory context switch 

as cache memory would be on a regular multi-processor [83].  The task allocation 

system has thus been designed to minimize the number of memory context switch 

needed, and in this case, bring it down to zero.  

The Local Stores were designed for the Cell to run as a high-end processor. 

Compared to the Gigabytes of memory available, a 256k Local Store is small and may 

not be sufficient to fit a single task. However, the Cell is used here as an embedded 

processor. The point of embedded real-time systems being efficiency, the tasks 

programs will, in most of the cases, be small. Thus it should fit in the Local Store and 

not even use it all.  

The idea behind this kernel is to statically allocate processes, not to a SPE, but 

to a precise area in a SPE Local Store. This area would have to be statically defined 

during the system compilation.  

At system startup, the process code would be loaded within this area. The area 

may be wider than the code requires to store variables, the process stack, and the 

register value for context switches. 

By this mechanism, the memory exchange between Local Stores and the main 

memory are drastically reduced. Once loaded, the only exchange needed would be for 

run-time kernel function (system calls, semaphores…). Context switch simply consist 

in saving all the registers at the appropriate area in the LS, and load the new ones. 

The number of task that can be allocated in a Local Store will obviously depend 

on the task code. Note that if these programs use all the 128 128-bit registers of the 

SPE, less than 128 contexts fit in the Local Store. The number of available register 

may be limited at compilation to limit memory usage. 

Some kernel functions will also have to be stored on the Local Store. These 

functions will run in user mode so no context switch is needed. They will allow 

communication with the other processors (SPEs and PPE), and the kernel to execute 
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certain functions not available from the PPE, such as managing semaphore. The 

context switch function, triggered by the PPE also resides in this area. 

Following is a representation of a Local Store memory map. The kernel function 

is the only constant part of any LS. Depending on the system compilation, the number 

of task, the code, variable and task size may change. 
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     Figure 3-2 - Local Store Memory Map 
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Following these criteria, a task structure can be defined. To allow the kernel to 

manage the task, this structure should include: 

- The SPE to which the task belongs to 

- A pointer to the code area 

- A pointer to the variable area 

- A pointer to the context save area 

- A pointer to the initial stack address. 

The kernel functions being always loaded in the space area of the Local Store, 

tasks can access these functions through a direct pointer defined during the 

compilation. 

 

 

3.3 Scheduling 

 

Once tasks have been created and allocated to a SPE, it is necessary to schedule 

them. There are many possible scheduling algorithms for real-time systems. 

Moreover, the PPE being only used for the kernel, implementing high complexity 

algorithm can be a viable solution. Such algorithms are proposed in [49],[62],[36] and 

[55]. 

However, in order to keep response time as short as possible, a simple algorithm 

is used. One of the most common algorithms is a priority driven preemptive scheduler. 

In such a scheduler, the highest ready priority task is always running. If a task 

with a higher priority than the one currently running becomes ready, the running task 

is preempted, store in memory as a ready task, and the new task is started on the 

processor. 

By using structures equivalent to the one used by the Linux kernel [7], it is 

possible to achieve a O(1) priority algorithm. This means that the execution time does 

not depend on the number of tasks ready to run. Such algorithms achieve low and 

constant response time. To achieve such results, the scheduling algorithm uses a ready 

task queue per SPE. The task queue is stored in an array, indexed by their priority. 

With a priority driven scheduling algorithm, finding the next process to run is simply 

a matter of finding the highest priority in the array pointing to a process and execute 
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it. The algorithm complexity thus depends on the number of priorities and not on the 

number of processes. 

However, unlike Linux, it does not seem appropriate to introduce round-robin 

algorithms for processes of equal priorities. Round robin algorithms need periodical 

interruptions for each of the SPE which would be difficult to implement and also 

putting a much heavier load on the PPE, already managing 8 scheduling algorithms 

and the synchronization functions of the SPE. Moreover, even with the tasks being 

statically allocated in the Local Stores, context switching is still a long task requiring 

inter processor (PPE and SPE) communications, saving hundreds of registers. Thus, a 

round robin algorithm would slow down the overall system reactivity and render the 

system predictability more difficult to establish. Therefore, this kernel will never have 

more than one process per SPE running at a specified priority.  

As tasks are statically allocated to a SPE, there is no problem of task repartition 

in the scheduler to homogenize processor usage, as there is on SMP kernels. 

Therefore, the scheduler is scheduling each SPE as an independent processor. Data 

structures must then be duplicated to fit the number of SPE. Each SPE will have its 

own task list and no other SPE can access or modify it. Although, due to 

synchronization, a SPE might get a task ready on another SPE but these cases will be 

managed by the kernel, on the PPE, and described in 3.4. 

 

 

3.4 Synchronization – Semaphores 

 

Synchronization is the most critical and difficult part of the kernel. More than 

requiring low response time and predictability, it influences scheduling. When a task 

is denied access to a critical resource or section of the code, it requires changing its 

state and putting it in a queue, waiting the resource to become available. 

Among the many usual synchronization functions, the semaphores have been 

chosen to be implemented in this kernel. By successfully implementing semaphores, it 

will be proven that mutexes and conditions can also be efficiently implemented on the 

Cell. 

 



 

 22 

3.4.1 Hardware implementation 

 

The first concern specific to the Cell is about the way SPE lock and release the 

semaphores. On a regular mono-processor kernel, the semaphores are dealt with 

system calls. It means that the kernel is locking or releasing the semaphores when 

asked by a task. The task is blocked while the system call is executed.  

The problem of this approach on the Cell is that we have only one kernel, 

running on the PPE. System calls, through interrupts or messages, are thus much 

slower than on a single processor. Moreover, with 8 SPE potentially requesting 

semaphores, the PPE might become overloaded, or drastically increase the response 

times.  

Using only the SPE is also impossible. To run efficiently, the semaphores 

influence the scheduling using priority inversion techniques among other things.  

Therefore a mixed solution has to be implemented. If no action from the kernel 

is necessary, the SPE will use their Atomic Cache Unit (ACU) [29] which is a small 

cache containing 6 lines of 128 bytes. The SPE can thus simulate atomic operation on 

shared-memory by verifying the cache line is not dirty when sending it back to the 

central memory.  

Other actions that require the kernel will use blocking and non-blocking system 

calls. System calls can be implemented in multiple ways. The simplest one is to use 

the mailbox provided by the Cell to communicate between the PPE and the SPE. 

However, according to general opinion, this is not the fastest solution. 

The most common approach is to use in parallel the Stop-and-Signal function of 

the SPE, and Direct Problem-State Register Access (DPSRA). Basically, the SPE 

saves the value of the system call in one of its user register. It then executes the stop-

and-signal function which stops the SPE and sends a signal (interrupt) to the PPE. The 

PPE then handles the interrupts by retrieving the system call value through DPSRA, 

which is a DMA transfer of a SPE user-state register to the PPE cache. 

The problem of this last approach is that the SPE is stopped until the system call 

is executed. For blocking system calls, this solution is working. But not for non 

blocking system call. A simple signal would not be working either. The SPE running, 

the user register may be rewritten before the PPE had time to access it. 
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Therefore both of the previous solutions shall be implemented. The stop-and-

signal used for blocking system calls and the mailbox for non-blocking system calls. 

Retrieve semaphore value

If semaphore is locked, 
warn the PPE the task is now pending

If semaphore is not locked, modify its value.

Commit the semaphore

Commit successful. 
Warning the PPE the semaphore is locked

Lock successful

If commit failed, try again

Stop the SPE, 
so the kernel can switch context

Task has been restarted.
Trying to acquire the semaphore again

 
Figure 3-3 - State representation of a semaphore acquisition using the ACU 

 

 

3.4.2 Priority Inversion 

 

As said earlier, the semaphores influence the scheduling. Here is why: Let’s 

imagine a single processor running a preemptive priority driven scheduler. 3 tasks (p1, 

p2, p3) have been created on the kernel. We have priority of p1 > priority of p2 > 

priority of p3. Therefore if the 3 tasks are ready, p1 will be the one running. 
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At the time t0, only p3 is ready, so the scheduler starts p3. P3 locks a 

semaphores and starts running the critical section. 

 At this point, p1 becomes ready. As p1 has the highest priority, it starts running. 

P1 then tries to lock the semaphore p3 is already using. The semaphore being used, p3 

is denied the access to the critical section and is stored in a waiting queue by the 

kernel. 

Then the task p2 becomes ready and starts running, p2 having a higher priority 

than p3. P3 and p1, blocked by the semaphore, will then be blocked until p2 finishes.  

The result is a task indirectly blocking a higher priority task (p2 blocking p3 

thus blocking p1). This is not acceptable for a real-time kernel. P2 computation time 

being unknown, p1 will be blocked for an unknown amount of time and will probably 

fail to complete within its deadline. However, p3 blocking p1 is acceptable. P3 is in a 

critical section so it can never be preempted by another process which attempts to 

access this same section. 

The result we would have wanted to obtain for this scenario is p3 starts running 

and get into its critical section. P1 become ready and get stored in the semaphore 

queue. When p2 gets ready, it stays in the ready queue and does not preempt p3. 

When p3 exits the critical section, p1 is freed will run until completion. Then p2 will 

be able to complete too. 

 

 
Figure 3-4 - Priority Inheritance 
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This solution seems to be contrary to a priority driven kernel. But by introducing 

two priorities per task, a static and a dynamic one, this problem can be solved. This 

solution is called the priority inversion protocol [66]. 

The static priorities are the one defined earlier. They are allocated at the task 

creation and will never change. Dynamic priorities may change. When a process is not 

in a critical section, its dynamic priority is equal to its static priority. However, when a 

process is in a critical section, its dynamic priority is equal to the highest static priority 

of the tasks in the pending queue of this semaphore. Therefore, no task can be blocked 

by a lower priority task. 

On a multi-processor kernel, the problem is more difficult. Although such an 

algorithm can be used, it presents some problems. A solution has been proposed in 

[61], the multiprocessor priority ceiling protocol. More than avoiding unwanted 

preemptions, it avoids deadlocks and minimizes the blocking times.  The 

multiprocessor priority ceiling protocol fits perfectly the requirements of a hard real-

time kernel for the Cell. 

 

3.4.3 Task dispatching 

 

Another complex problem linked to semaphores is the task dispatching 

problems. When a task tries to acquire a semaphore which is already fully used, the 

task is stored into a pending queue attached to the semaphore. When the semaphore is 

released, one of the pending tasks has to be released. The task dispatching problem 

consists of choosing which task will be freed. 

An interesting solution is proposed in [50].It uses an heuristic solution to 

analyze the tasks behavior and give them a priority in the pending queue depending on 

this result. However such an algorithm seems unfit for the Cell as the PPE would have 

to run heuristic algorithms to analyze the tasks from 8 processors using semaphores. 

A simplest approach to the problem would be to free the task with the highest 

priority. Although it may be working on a single processor system, it is not adapted to 

multiprocessor systems. While the freed process may have the highest priority in the 

pending queue nothing ensures that its priority will be higher than the current process 

running on the SPE. Thus the process will not be allowed to run and will be put in the 
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ready process queue. All the tasks still waiting in the semaphore queue will be stuck 

until the freed task is allowed to run and complete. 

Another simple solution that fit the CBE is proposed here. Each semaphore will 

use 8 pending queues, one per SPE. Each of these pending queues will be a priority 

sorted list. Once the semaphore is released, the kernel will search for the pending 

process having the highest priority and could run immediately if freed. This means 

that the sleeping process priority (eventually the dynamic priority he would have if 

freed) has to be higher than the priority of the process currently running on its SPE. If 

such process does not exist, the highest priority pending process is released. 

Such an algorithm is fast (O(1) complexity), easy to implement and predictable. 

 

3.5 Interfacing with Linux 

 

Although the kernel just discussed might be more efficient, a complex kernel is 

not necessary to prove the hypothesis. Therefore a simpler version of the kernel will 

be implemented. The data structures and the global organization will not change but 

some algorithm will be simplified to ease the development process. 

A more detailed description of the software is available in Chapter 4. 
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4. Software Implementation 

 

In this part, the implementation of Virt-K (Virtual Kernel) is described. Virt-k is 

a proof of concept of the ideas proposed before. Due to the limited time for this 

project, the kernel has not been implemented as low-level drivers, hardware 

management function and compilers modules would have to be written. Therefore, 

these ideas have been implemented as a virtual kernel running over Linux. As Linux 

does not schedule the SPE (once a task is started on the SPE it is never preempted 

unless the task asks to), the response times on the SPE themselves are significant. 

However, the response times on the PPE are not. The PPE part of the kernel will be 

executed as a user task within Linux. As the Linux distribution that is used is not real-

time and running over tasks, the response times it provides may not be significant at 

all. 

Only the global architecture and features of Virt-K will be described here.  

However a more complete documentation of the structure and functions is available 

with the sources on the Sourceforge project [56] under the GPLv2 license. 

Virt-K has been developed on an x86 Fedora Core 7 using the IBM Cell 

Development Kit. All the functionality testing has been realized on the IBM Cell 

simulator (systemsim), though the final and performances tests have been done on a 

Playstation 3 running Ubuntu. 

 

4.1 Software architecture 

 

The architecture of Virt-K will be detailed into two parts: the PPE part, which is 

the kernel, and the SPE part, which is where the users have their tasks running. 
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4.1.1 PPE – Kernel 

 

As Figure 4-1 shows, the kernel runs multiple threads. Such an approach would 

not be realistic for a real kernel as it would be necessary to implement a scheduler for 

the PPE. However, it simplifies the development task for this proof of concept. 

The first set of threads is necessary in the current Linux implementation to run a 

program on a SPE. To start a task on a SPE, it is necessary to call a function which 

only returns once the program stops, hence the need of a thread per used SPE. 

The other two threads are the real core of the kernel. The scheduler thread 

obviously realizes the SPE scheduling. The algorithm is quite simple: 

 

 

 

 

 

 

 

 

The scheduling algorithm itself has been described in chapter 3.3. 

The last thread entitled Mailbox management manages communications 

between the PPE and the SPEs. For optimum performance, these functions should not 

be done in a thread but in an interrupt handler triggered by the reception of a message 

from a SPE. It has been done as a separate thread in Virt-K as it simplifies 

synchronizations between the scheduler and the communication parts. 

What the mailbox management thread realizes is reading all the inbound 

messages, sent from the SPE, modifying some data linked to the task or semaphore if 

necessary and sets flags.  

For example, when a SPE sends a message to the PPE to make it aware it is 

pending for a semaphore, the mailbox thread attaches the SPE task to the semaphore, 

calculates the new dynamic priority of the process currently owning it, and sets a flag 

so the SPE will be rescheduled. 

 

 

While (true) 
For each SPE 

  If Need Reschedule Flag is set for this SPE 
   Acquire lock on SPE 
   Reschedule the SPE 
   Release the lock 
  End if 

End for each 
End while 
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4.1.2 SPE – User-space 

 

The SPE software architecture is simpler than the PPE one. 

The first set of tasks available here is the user tasks plus the null task, a task 

which is always ready so the scheduler can always find a task to run. Except for the 

null task, all of them are user-defined, depending on their needs. 

The other task is the switch task. It is used during context switching. 

When the PPE needs to reschedule a SPE, it sends the SPE a message containing a 

task identifier. The reception of a message triggers an interrupt on the SPE. The 

interrupt handler saves the registers, the stack pointer value and the program counter 

(except for the null task). It then returns from the interrupt, not in its original task, but 

in the switch task. The switch task reads the message sent by the PPE and triggers a 

context restore depending on the task (null task, new task, task already ran).  

The switch task has its own context but it is smaller than a usual one. As the interrupt 

handler “call” the switch function as returning from the interrupt, it is not necessary to 

save the register of the exact stack pointer value. Switching to switch task simply 

requires setting the stack pointer to the kernel stack value and jumping to the right 

address in the LS. 
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PPE

SPE

Scheduler

SPE Thread

Mailbox 
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SPE Thread
SPE ThreadsSPE Threads

SPE
SPE

SPE

User Tasks

Null Task

User Tasks
User Tasks

Switch Task

Mailboxes

 
 
Figure 4-1 - Software architecture 
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4.2 Implementation specifics 

 

As explained earlier, Virt-K is a proof of concept. Therefore, it differs from the 

ideas detailed in Chapter 3. 

For example, as said in chapter 4.1.1, the kernel is divided into two threads 

which are incompatible with a non-virtual kernel. 

 

4.2.1 LS Memory organization 

 

As Chapter 3.2  describes, tasks are statically allocated to a SPE local Store. 

However, due to the usage of gcc compiler, and Linux kernel loader, the position of a 

task in the SPE is not easily predictable. It could be retrieved from the object file 

generated for the SPE but it would be unpractical.  

Therefore, few modifications have been made to Virt-K: 

- Tasks on a SPE are identified by a byte identifier  

- The SPE stores a structure indexed by task identifier to retrieve stack 

pointer, program counter and the task status (new / ran) 

- Holes cannot be let in the LS to fit the stacks, so tasks are statically allocated 

at compilation as global arrays. 

- In PPE/SPE communication, the task ID is used instead of a task pointer 

 

4.2.2 PPE/SPE communications 

 

In chapter 3.4.1 was discussed the best implementation for PPE/SPE 

communications. It was said that mailboxes are better for non blocking system calls 

but that stop-and-signal with DPRSA would be better for blocking system calls. 

To simplify the implementation, only the mailbox systems have been used 

though for blocking system calls, the SPU is stopped, but the signal is not used. 

This results in a slightly slower response time for blocking system calls but it is 

not necessary significant compare to the SPU stop and restart time. 
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SPE PPE

Acquire semaphore

Task 2 has locked semaphore 1

Releasing semaphore

Task 2 has released semaphore 1

Attempting to lock semaphore 2 (already locked)

Task 2 is pending to semaphore 2

SPEstop()

Switch to task 3

SPEstart()

Switching to task 3

Scheduling 
SPE

 
Figure 4-2 - Example of PPE/SPE communications through mailboxes 

 

4.2.3 Conditions 

 

To ease the realization of functional tests, conditions have also been 

implemented. They use the same mechanisms as semaphores except that there is no 

priority inversion, and when a task signals a condition, all the pending tasks are set 

back into ready mode. All the SPU are also rescheduled. 
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4.3 Software status 

4.3.1 Development Environment 

 

Virt-K has been developed under GPLv2 License using C language, except for 

the context saves and restores functions which have been written in assembler. Source 

and header files are fully documented using Doxygen. The development was managed 

and backuped using Subversion. 

 All the development has been realized on Eclipse with the Cell SDK plug-in, 

running on an x86 Fedora Core 7.  

The final execution platform is a Playstation 3 running Linux Ubuntu. 

 

  
Figure 4-3 - IBM Cell SystemSim Simulator 
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4.3.2 Development Status 

 

Virt-K is currently available as a release candidate. Though it is incomplete and 

still includes some bugs, it has reached a step where it can be used by developers as a 

SPE framework. 

 

4.3.3 Optimizations 

 

Virt-K trying to prove it is possible to run an efficient hard real-time kernel on 

the Cell, it has been highly optimized. These optimizations are described in the source 

comments and in the Doxygen documentation. 

For example, a semaphore only needs a single bit to store its value. Therefore, 

by using bit fields, up to 8 semaphores per byte could be stored. However, to retrieve 

a semaphore, SPE use the ACU which transfer 128bytes. Then if multiple semaphores 

are stored in a byte or even in the surrounding bytes, another SPE reading or 

modifying this other semaphore would result in removing previous reservation by SPE 

other SPE trying to lock other semaphores. Thus, semaphore values are stored in 

128bytes array, decreasing the average semaphore acquisition time. 

 

4.3.4 Functional test 

 

In parallel of the development process, intensive testing has been realized. All 

the individual pieces (scheduler, context switch, mailbox management, semaphores) 

have been tested individually before being merged. 

The first stages of the functional testing have been done on IBM Cell Simulator 

(SystemSim), which allows cycle by cycle execution and full access to the Cell 

registers. The final tests had to be realized on a Playstation 3 due to the low 

performances of the simulator. 

The entire performance testing has been realized on a Playstation 3. 
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4.4 Known problems 

 

Although Virt-K is running there are still few problems left. Some of them are 

bugs which have not been found yet, but mostly unsolved problems. 

 

4.4.1 Context Restore 

 

This problem is due to the fact that tasks are not statically allocated and the SPE 

is managing the context values instead of the PPE. 

When a context is being restored, the stack pointer is restored first; all the 

registers values are retrieved from the stack. The process needs then to jump back 

where it was in the task. However, the SPE instruction set doesn’t provide a function 

to jump to an address stored in the LS. This address has to be loaded in a register first, 

therefore overwriting the value the register had before being switched. For this 

purpose, R127 (128th register) has been sacrificed.  

An analysis of object files generated by the compiler has never shown this 

register being used. 

This problem has not been solved because it is a problem met only in this proof 

of concept. On a non-virtual kernel, with statically allocated memory area, the PPE 

would be storing the context pointers. Thus when a SPE has restored its stack and 

register, it would stop and signal the PPE that it is ready. The PPE would then run the 

SPE from the right address, keeping the context untouched. 

 

 

4.4.2 Semaphores and ACU 

 

As described in chapter 3.4.1, to acquire a semaphore, the ACU is used. 

Through the ACU, the SPE acquire a 128-bytes line from the memory through DMA 

transfer. The SPE is then free to read/modify its local copy of the value. However, 

when the SPE tries to commit it, the ACU check a cache table to see if the value used 
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by the SPE is still valid (not read or written by any other SPE). In the case of such an 

event, the semaphore lock function tries to acquire the cache line again. 

 

 

 

 

 

 

 

 

 

 

The problem of such an approach is that it is not predictable. In a worst case 

scenario, several SPE could be trying to lock the same semaphore at the same time. It 

would probably results in failure to commit for all of them and have them trying again 

to acquire the cache line. This problem will be discussed further in Chapter 6.1.2. 

 

 

 

4.4.3 Shared variables 

 

In its current implementation, Virt-K does not manage shared variables. It could 

probably be implemented as a user task, though some change in the kernel would be 

necessary to allocate memory for these variables. 

For the Barber Problem test (see Chapter 5), a quick solution has been 

implemented: semaphores are used as shared variables. New functions have been 

added to allow reading and saving the variable to the main memory, however there is 

no protection against concurrent access. User programs have to lock access to these 

variables through a semaphore. 

 

Init: 
 Retrieve cache line from memory 
 If semaphore is locked 
  Send message to kernel 
  Stop 
 Else 
  Semaphore = 0 
  Commit semaphore to memory 
  If commit was successful 
   Return 
  Else 
   Goto Init; 
End 
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5. Performances 

 

In this chapter, the performances of Virt-K are detailed. Virt-K being a virtual 

kernel and running over Linux, the response times of the kernel are not significant. 

Therefore, the performance tests have been focused on the SPE side, measuring, 

semaphore acquisition, release and context switch times. In the first part, a theoretical 

approach of these times is provided. Then, a practical test has been implemented to 

retrieve these values. 

5.1 Timing Analysis 

 

In this first part a theoretical timing analysis of the critical times in Virt-K is 

provided. This analysis is solely based on the software architecture and provides a 

worst-case response time. Some hardware dependant (interruption propagation time, 

DMA transfer delay) values necessary for these analyses being not available, 

constants will be used to provide an approximation.  

5.1.1 Context switch 

 

Context switches can be split into 3 parts: saving the context, updating kernel 

and hardware status, restoring a new context. 

Context saving and restoring have the same organization. After testing which 

kind of task has to be saved or restored (null, new or ran task), the necessary registers 

are saved/restored.  

For the null task, no values are saved. Restoring it simply jumps to the 

beginning of the function with the matching stack pointer restored. This stack pointer 

is never saved. 

For a new task, there is no need to restore a context. The kernel simply loads the 

matching stack pointer and jump to the start address. 

For a task which had already run, all 128 registers are stored on the task stack, 

with the program counter. The stack pointer is saved in the task management structure 

in the Local Store. 

Thus execution time of context saves and restores are: 
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  _ ℎ_ + _ ℎ   

 

• 

  

 

Moreover, the switch task resets the interrupt mask and flags, reads the message 

from the PPE with the new task ID and retrieves the stack pointer from the Local 

Store. 

Its execution time is then: 

•  

 

Therefore we obtain a global execution time of a context switch of 

 

 

 

 

These values will be discusses in Chapter 6.1.1 

 

5.1.2 Semaphore Acquisition 

 

As described in Chapter 4.4.2, semaphore locks are problematic due to their 

unbounded response time.  

A formula for semaphore lock response time, when the semaphore is not locked, 

is: 

 

 

 

 

As the formula shows, the semaphore lock response time is a recursive formula. 

The issue is that the success or failure of the commit action is unpredictable in the 

• 

 

 

• 
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case of a semaphore used on multiple SPE. Moreover, acquiring and committing 

cache lines depends on the use of the EIB. The ACU thought being atomic, uses DMA 

transfer over the EIB. Therefore, its speed depends on the EIB usage, which means the 

more semaphores are used, the slower a lock is. But also the SPE could already own a 

clean version of the semaphore in its cache. There would be thus no data transfer 

required to retrieve the semaphore’s value. 

This issue will be further detailed in Chapter 6.1.2. 

5.1.3 Semaphore Release 

 

Semaphore releases are a much simpler problem than semaphore locks. The 

issue of semaphore locks comes from the need of “memory transactions” which can 

fail and need to be executed again. However, releasing a semaphore is a truly atomic 

action. This action consists of writing the semaphore value in the Local Store, and 

committing it to the main memory. The value is not read from the main memory 

before committing it, thus removing the need of a transaction system. 

The formula for semaphore releases is: 

 

 

 

However, as for semaphore locks, the time needed to commit the information to 

the memory depends on the EIB usage. 

 

5.2 Performances Tests 

 

Timing analysis is a useful tool for schedulability analysis. However, the 

formulas presented earlier include much uncertainty, mainly due to unknown 

hardware response time. Moreover, even if such times were available, timing analysis 

focuses on the worst-case scenario. 

Therefore, practical performance tests have been realized. On the one hand it 

gives an approximation of these hardware response times. On the other hand, it 

provides the average values, which is much more efficient for performance analysis. 

 

•  
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5.2.1 Test Case 

 

To test the performances of Virt-K, a well known synchronization problem has 

been implemented. It is called the Sleeping barber problem [78]. 

This problem simulates a barber shop. The barber shop has X barber working, X 

barber chairs and Y chairs for waiting customers. 

A barber cuts hair as long as there are waiting customers. If there are no waiting 

customers, a barber falls asleep on his chair. 

When a customer arrives, he sits on a waiting chair. If he is the only customer, 

he wakes the barbers. If the customer arrives and there are no waiting chairs, he 

leaves. 

This problem is simulated by implementing one thread per barber, and one 

thread per customer. In this test case, we use 6 SPE. Three of them program one 

barber and one customer each. The other three program one customer each. The shop 

has 2 waiting chairs available. 

This specific problem is particularly adequate as it requires semaphores to 

access the number of waiting customers, but also conditions to wake up the sleeping 

barbers. 

To execute such a problem on Virt-K, functions to read and write variables from 

the main memory have been added. They are not part of the regular implementation, 

but were necessary to run this test case. 

It is also important to note than the implementation of the sleeping barber 

problem has not been optimized. This test case focuses on kernel function response 

time and not on overall performances. 

 

5.2.2 Timing solution 

 

To acquire precise timing of the kernel function, the SPE decrementers have 

been used. They are hardware register decreased at regular interval without any 

software requirement. 
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Therefore, measuring these function times consist of setting the decrementer 

value to at the beginning of the function, reading its value at the end and taking the 

difference. The rate at which the decrementer decreases is available within Linux 

kernel information. 

 

5.2.3 Results 

 

Figure 5-1 presents the results for semaphore lock times. As expected, the 

responsive repartition shows two steps:  

- One around 125ns which matches cases where the semaphore is already in 

the local ACU. 

- One around 31µs which matches regular semaphore access  from distant 

memory 

It also shows that there are much higher values. Only the smallest values are 

shown but the test cases reported response time over 5ms. 
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A semaphore release matches a semaphore lock from the local ACU as it 

consists of sending a message to the PPE and committing the value to the ACU. Its 

execution time is thus around 125ns. 

 

For context switch, values are similar for equivalent switches (no null or new 

task). The maximum gap between two context switches is around 20ns and is due to 

reading and writing channels (for mailbox and interruption management).  

In average, a context switch requires 1.6ms. 

 

These results prove that the Cell Broadband Engine can achieve high 

performances as a real-time processor. However, they also highlight some problems 

due to the Cell architecture: 

-Due to the fact SPE are distributed processors, constant semaphore acquisition 

time is extremely hard to achieve. 

-Due to the large number of registers, context switches are slow compared to 

usual embedded processors. Virt-K however achieves much lower context switching 

time than Linux. 

These problems will be discussed in details in the next chapter. 
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6. Weak Points and Possible Enhancements 

 

The proof of concept, Virt-K, has shown some flaws in the kernel designs, and 

also provided some useful performance analysis which could lead to performance 

enhancement. 

 

6.1 Complex scheduler 

 

The design being focused on minimizing response times, it was decided to 

restrict the scheduler to a preemptive priority-driven scheduling algorithm. However, 

the sleeping barber test case has shown that even with Linux kernel and over software 

running concurrently running on the PPE, its workload is still low. 

Therefore, complex scheduling algorithms, as discussed in chapter 3.3 could be 

implemented. Response time would probably be slightly increased, but the overall 

performances of the system would be greatly increased. 

 

6.1.1 Context Switches 

 

As the performance results shown, a context switch requires about 1.6ms. 

Although this is much faster than a full context switch (saving and restoring all the LS 

to the main memory), it is still slow.  

The number of register to save and restore is what is slowing down context 

switches. On an x86 processor, there are only 4 main registers plus a couple for flags, 

program counter… The SPE have 128 128bits registers. A solution would be to limit 

the number of registers used by a task or at least use this number to save and restore 

only the required number of registers.  

For example, in the sleeping barber test case, no tasks use more than 13 

registers. By using this parameter, Virt-K could save much memory on the stack 

(leaving space for only 13x128bits = 208 bytes instead of 128*128bits = 2048 bytes), 

but more importantly nearly divide context switch time by 10.  
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This flaw in Virt-K is only due to its implementation. In a non-virtual 

implementation, a restricted context switch algorithm could be easily implemented. 

 

6.1.2 Semaphore Locks 

 

As explained in chapter 5.1.2, and confirmed by the performance analysis, 

semaphore acquisition presents a predictability problem. Although in most cases, 

semaphore locks are fast, the execution time is not bounded. 

Therefore, Virt-K does not fit the requirements for a hard real-time kernel. Hard 

real-time kernel requires predictable performance to perform schedulability analysis 

and ensure that the tasks will complete within their deadlines. 

However, Virt-K and the idea it is demonstrating are still eligible for a soft real-

time kernel. The average low response time for semaphore acquisition allows high 

performance, and unpredictability is not critical for a soft real-time system. 

A solution to this problem would be to implement semaphore lock through 

system calls. Performance would be drastically reduced in average but the execution 

time would be bounded and thus predictable. A mix of both solutions could also be 

implemented. The SPE would try to acquire the semaphore through the ACU. If the 

commit action fails, the acquisition would be done through a system call. 

This solution provides the same low execution time as the current 

implementation for successful cases, but bound the worst case execution time. 

However, it may be difficult to implement as the value is still shared between PPE and 

SPE. 

 

6.2 Shared variables 

 

A critical point which appeared during the test case implementation is the 

necessity to provide shared variables. The solution used in the test case is not optimal 

and should not be used in production. 

The Cell and more precisely the SPE provide efficient hardware to solve this 

problem. Each SPE owns a MFC which allows asynchronous DMA transfers. Which 
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means a SPE task can request a data area to be transferred from the main memory and 

continue computing other data while it is retrieved in the LS. 

An efficient implementation would be to request these data so they are retrieved 

when the task needs them. However concurrent access to these data makes it more 

difficult. 

 As these data are shared variables, other tasks or processor may use them 

between the moment the transfer is requested and the values are sent back to the main 

memory. Therefore it is necessary to protect this critical section by a semaphore. But 

then, by requesting an early DMA transfer to limit waiting time on the SPE, the length 

of a critical section is increased which is slowing down the overall performances of 

the kernel. 

An interesting solution would be to adjust the time at which the DMA transfer is 

requested depending on the static task priority. A high priority task needs to be 

completed as fast as possible whatever the cost are on the overall performance. So the 

DMA request, and the semaphore acquisition, should be done early to ensure the data 

will be there when needed. For a low priority task, the request should be done at the 

last moment to limit the impact on the system performances. 

In the case of Virt-K, it would be necessary to provide shared variables 

allocation functions on the PPE, and a mean for the SPE to retrieve those variables 

address. However in a non-virtual implementation, as physical address as used 

directly (there is no need to use the TLB), address could be hard encoded in the SPE 

executables. 
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7. Conclusion 

 

To conclude, an efficient real-time system can be implemented on the Cell 

Broadband Engine. Through Virt-K, it has been proven that running and 

synchronizing multiple tasks on the SPE is possible, and that it is mostly predictable. 

However, Virt-K failed in being completely predictable and therefore did not 

answer the hypothesis. Due to the unbounded execution time of semaphore 

acquisition, Virt-K, and the design it is implementing, do not fit the requirements for a 

hard real-time kernel. Enhancements have been proposed to bind the upper execution 

time; but these improvements either sacrifice performances for predictability, or 

provide an extremely wide bound, not significant in most of the cases.  

It seems that shared-memory semaphore approach is not adapted to the Cell 

architecture. Further research should look at an implementation of message passing 

semaphores on the Cell. 

An important point is that though the Cell can run soft real-time kernels and 

probably hard real-time kernels too, it appears that its purpose is not for pure real-time 

systems. Even in achieving extremely high performances by running eight real-time 

processors in a single chip, it is only using a small part of its possibilities. 

An interesting approach, which seems popular among the Cell community, is to 

run both Linux and a real-time kernel on the Cell. As in Linux RT, a real-time kernel 

would be running on the PPE and reserve a number of SPE. A regular Linux kernel 

would be then running as the lowest priority task in the real-time kernel and could use 

the unreserved SPE. 

The ideas proposed in this dissertation would fit such an approach though a 

scheduler would have to be added on the PPE to allow Linux to run.  

For a simple soft real-time system, an implementation like Virt-K would be 

sufficient. Running the process within Linux kernel with a high priority would ensure 

real-time response time (except for few system calls). Moreover, Linux kernel not 

interfering with the SPE execution, allows real-time capabilities too. 

To finish, the Cell has real-time capabilities but is much more than a real-time 

processor and to fully use its potential, mixed solutions should be considered. 
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9. Appendix A – Glossary 

 

 

Cell  Short name for the Cell Broadband Engine. 

DMA 
Direct Memory Access. DMA transfers are transferred that do not involve the CPU 
once they are started. 

DPSRA  
Direct Problem State Register Access. Stands for access to the SPE registers by the 
PPE through DMA transfers. 

EIB  Element Interconnect Bus.  Connect all the elements of the Cell Broadband Engine. 
FlexIO  Input/output interface of the Cell Broadband Engine. 
Itanium  Intel architecture used for high computational power servers or clusters. 
LS  Local Store. It is a 256KB memory owned by each SPE. 

MFC  
Memory Flow Controller. Manage all memory transfer between the LS and other 
LS or main memory. 

MPI  
Message Passing Interface. It is an efficient communication protocol often used in 
clusters. 

PC  Program Counter. Address of the instruction currently being executed 

SMP 
Symmetrical Multi Processing.  Common approach to multi-processing where a 
copy the kernel is executed on each processor 

SP Stack Pointer. 
SPE Synergistic Processor Elements. 
PPE PowerPC Processor Element. 

X86 
32bit processor architecture introduced by Intel and used in most of the personal 
computers. 

X86_64 64bits architecture. Successor of the x86 architecture. 
XDR  Extreme Data Rate. XDR is a type of Random Access Memory. 
Virt-K Virt-K is the implementation developed during this project. 
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10. Appendix B – Terms of reference  

10.1 Background Information 

 

In  the  late  years,  microprocessor  founders  have  had  trouble  following  the 

 Moore  Law.  Not  only  they  have  had   they  to  face  physical  problems  due  to 

 the  size  of  transistors  but  also  what  is  called  the  “Memory  Wall”  [88]  due  to 

 the  memory  latency  and  cache  misses.  Numerous  new  ideas  have  been  tried  to 

 solve  this  problem  but  only  few  have.  Classical  multicore  architectures,  like 

 Intel  Core  Duo,  have  managed  to  achieve  greater  performances  but  memory 

 accesses  are  being  more  critical  than  ever.   

However  as  described  by  [35],  STI,  the  union  of  Sony,  Toshiba  and 

 IBM,  have  worked  since  2000  on  this  problems  and  have  found  a  working 

 solution:  the  Cell  Broadband  Engine,  commonly  called  Cell.  The  results  of  the 

 Cell  will not  be  discussed  here  but  they  can  be  found  in  [86].   

The Cell thus has many interesting aspects. It has been made as a replacement 

for personal computers architectures (x86, x86_64) but is also a powerful parallel 

calculator. It is being currently used in the Playstation 3, but also in multiprocessors 

computers and soon in clusters. 

Parallel computing has been a research subject for many years now, but its 

application to real-time systems has always been problematic as many processors 

often imply large power consumption.  The Cell may change this as IBM clearly 

indicates in its official articles, [35] among others, “The Cell processor should provide 

extensive real-time support”. Further references to real-time support can also be found 

in the technical documentation of the Cell (i.e. [29]).  STI has also announced, 

according  to  [80], a  lighter  version  of  the  Cell  for  embedded  hardware  and 

 real‐time  usage 

The few research done on real-time for the Cell have been on efficient 

computing algorithm as MPEG compression, ray tracing, terrain rendering, but none 

of them has clearly answered the question of the feasibility of a real-time operating 

system for the Cell. 
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10.2 Project Outline 

 

During this project, it will be tried to answer the question of the feasibility of a 

real-time kernel for the Cell, which is a heterogeneous multicore processor. More 

than proposing an implementation, further performances tests will be used to judge 

about the Cell’s efficiency as a real-time processor. 

 

Our research hypothesis will be: 

“Can an effective hard real-time scheduler be implemented for the Cell 

Broadband Engine?” 

The main criteria of a hard real-time scheduler, which will be used to test its 

effectiveness, are: 

• It has to allow task creation. 

• It must be able to schedule task for concurrent processing. 

• Its performances should be predictable and bounded. 

• It should provide primitives for safe concurrent processing (mainly 

synchronisation primitives) 

It would be really difficult, even impossible to write a complete kernel within 

the project deadlines. It would be possible to use an existing kernel, and adapt it to 

the Cell, but it would require a lot of time to port and most of its code would have to 

be rewritten to fit the requirements. Therefore, Linux, which has already been ported 

on the Cell, will be used as a development platform, to run a “virtual kernel”. Linux 

drivers and few low-level functions will be used to simplify the development process 

and be able to focus on scheduling and synchronisation. The main problem of this 

approach is that Linux kernel is not real-time. Some part of our virtual kernel will not 

thus real-time but results might still be available. 

The kernel that will be developed will focus on achieving high performances 

(i.e. better than Linux and existing real-time kernel on other architectures) using new 

scheduling and synchronisation functions. A hard real-time scheduler will be 

implemented, and be provided semaphores. Further scheduling algorithms and 

synchronisation means (mutexes, conditions) may be discussed in the report. 
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The implementation and its effectiveness will be tested through simulation by 

running case studies. It will be judged effective if the case study run successfully and 

the achieved latencies are acceptable for a real-time kernel. 

To fully understand the implication of this project, a bit of background on the 

Cell processor and real-time kernel is needed. 

 

10.3 Review of the Cell Broadband Engine 

 

10.3.1 Heterogeneous multicore architecture 

 

Heterogeneous multicore processors are quite new on the processor markets. 

Before them, except a few exceptions, only the regular single core processor, the 

homogeneous multicore processors like the AMD Opteron [46] and heterogeneous 

multi processors were available. 

Multi-processors (and parallel systems) have played quite a big role in the past. 

Even with the computing power of a processor following the Moore Law or so, the 

need for power will always exists. Even with the last generation of processors being 

thousands times more powerful than their predecessors 20 or 30 years ago, they still 

do not fit every purpose. Modelising climate or physicals phenomena requires much 

more power than a processor can bring. Parallel processing was and still is the only 

way to reach such computing power requirements. Moreover, as described in [77], 

parallel architectures have many advantages as reliability, low cost (compare to an 

eventual equivalent single processor.  

Some of these advantages have been lost when moving to multi-processor 

parallel architectures to multi-core architectures, but the computation power and 

reliability are still there.  

As said earlier, parallel architectures have been a research subject for many 

years. Many results may be used in this project as multi-core processors can be seen 

as a multi-processor parallel architecture on-a-chip. 
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10.3.2 The Cell Broadband Engine Architecture 

 

The Cell, as described by [32], consists of 9 cores on a single chip. One of them 

is the PPE (PowerPC Processor Element), and the other eight are advanced 

computational units called SPE (Synergistic Processor Units). All these processors are 

linked by a high data-rate bus called EIB (Element Interconnect Bus). The SPEs and 

the EIB are the keys to the Cell success as they provide a considerable amount of 

computational power without neglecting the memory wall problem. 

 

10.3.2.1 PowerPC Processor Element (PPE) 

 

According to [29], the PPE being the central element of the Cell is in fact an 

enhanced PowerPC 64bits core. Thus, using well known technology, STI has 

guaranteed some compatibility with existing softwares.  

In the current Linux version running on the Cell, the PPE is the only core used 

by default. However softwares can choose to send tasks to the SPEs. The problem 

with this solution is that, although all the previous PowerPC software can be 

executed without any changes, a lot of the SPE computation time is wasted as few 

software are using them. 

The main role of the PPE, fixed by the design [32], is to host the operating 

systems as it has full access to all hardware (Interrupt Controller, EIB 

Management...).  

 

10.3.2.2 Synergistic Processor Elements (SPE) 

 

The SPE is a highly advanced 64 bits computational unit using SIMD (Single 

Instruction Multiple Data).  

The main difference between PPE and SPE, more than the restricted instruction 

set of the SPE, is the way they access memory [27]. Where the PPE uses the same 
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standard access (cache L1 and L2), the SPE has its own local memory. As 

[29]indicates, each SPE owns a 256 kilobytes Local Store.  

Another critical difference is that a PPE accesses the memory “on the fly” which 

means the data are retrieved from memory to the cache at the moment they are 

needed. However, the SPE owns a MFC (Memory Flow Controller) which can retrieve 

data asynchronously. The MFC is given a list of memory area to load or store and will 

do it as soon as the hardware makes it possible. Therefore, the SPE can pre-fetch the 

data it’ll need before it actually needs it. This may seems really simple, but it is a 

solution to the memory wall as mentioned earlier. The memory latency is not a real 

problem anymore as the SPE does not have to wait for its data to keep running. To 

be more precise, data being prefetch, the program will not encounter cache misses, 

and then run faster. In the case of a single process running on a SPE (isolated and 

non-pre-empted), it is possible to calculate exactly response time within the SPE. As 

every instruction as a know execution  time and so does the Local Store access, the 

execution time of a function can be calculated at a SPE cycle precision. 

Moreover, it is fully possible to imagine a pre-allocation of data in the Local 

Store having a task ready to run has soon as a signal (intern or external event) 

arrives, avoiding a costly context switch. By sharing the Local Store, several processes 

could be stored at the same time. Context switch in this case would only require 

saving the different register. 

For a soft real-time usage, the same principle could be applied adding paging 

functions to send back some processes to the main memory if needed. Context 

switch would still be less costly than copying the full Local Store to the main memory 

and the average response time would stay quite low. 
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10.3.2.3 Current Researches 

 

The Cell and its new architecture, first produced in 2005, is still a subject of 

research. 

More than looking for efficient algorithm using its full potential as [37],[58] and 

[6], many laboratories are working on possible implementations and how to enhance 

the current Linux for Cell. 

[39]have worked on implementing MPI (Message Passing Interface) on the Cell. 

MPI is necessary to work efficiently on multiprocessor Cell computers.  They have 

implement blocking point-to-point communications on the current Linux for that. But 

more than that, the techniques they used are interesting for SPE synchronisation 

(mutexes semaphores). It will be discussed in more details later in this review.  

 

10.4 Real-Time Operating Systems 

 

What real-time operating system is will not be discussed here; instead we will 

focus on an efficient implementation of it on the Cell 

The concept of heterogeneous multicore is new, so there have not been many 

research done on it.  However, even if all the cores are in a single chip, the Cell can be 

seen has a heterogeneous multiprocessor, thus, giving access to many results from 

completed researches. Most of them will not be cited here as the ideas they bring are 

really technical and will not be used before the programming stage. 

According to [78] there are only three ways to modelise multiprocessor systems: 

shared-memory multiprocessors, message-passing multicomputer and wide area 

distributed systems. The third one cannot be considered for the Cell as it is a single 

chip; however the two other approaches are valid. 

Although[15] and their AsymOS operating system have proven it is possible and 

efficient to run different part of the operating system on each core, using MPI, it is not 

appropriate for the Cell. The SPE have not been designed to run an operating system 

due to their limited access to the hardware and the high-delay context changes. 

To consider the Cell as a shared-memory multiprocessor seems to be the most 

efficient approach. 
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10.4.1 Kernel  

 

As it was said earlier, SPEs are not supposed to run any part of the operating 

systems, including the kernel, hence the kernel has then to run entirely on the PPE.  It 

seems also acceptable, in certain condition, to run a micro kernel on a SPE to manage 

local scheduling and synchronisation. It would increase context switches but decrease 

substantially communication between the PPE and SPE which may prove useful in 

specific applications. 

A problem Linux faces is the lack of usage of the SPE, as they are only used by 

Cell specific application through threads, the father process always running on the 

SPE. In this case, to maximise the Cell usage, the SPEs may be used fully. 

An interesting approach is to run a real on the PPE, and all the time-constrained 

software on the SPEs. Some unconstrained software could also be run on the PPE if 

needed. 

The main problem of this approach is the synchronisations and the access to 

Operating System resources. However it allows the kernel to run power consuming 

scheduling algorithms as most of the PPE computing time is reserved to the kernel. 

Such optimized algorithm may not be proven useful to a hard real-time kernel where a 

pre-emptive round-robin may be preferred. But for soft real-time, power-consuming 

algorithm, it may improve the overall performances. 

 

 

10.4.1.1 Synchronisation 

 

As described by [38], in any multi-tasked OS, it is necessary for the kernel to 

provide synchronisation means, so that the different softwares executing at the same 

time can exchange information and be prevented from writing a shared memory area  

at the same time. 

These functions are usually operated by the kernel using specific CPU 

instructions [78]. The Cell provides such function support but only on the PPE. 

In the current Linux implementation, the SPEs execute each of these functions 

by sending system calls to the PPE which do the real treatment. This solution has 
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drawbacks, as it needs the PPE execution to be interrupted each time one of the eight 

PPE needs access to these functions.  

It is important to understand that synchronisation is critical in a multicore 

system and that every single micro-second gained will have a huge impact on the 

overall performances. 

The work of [39] mentioned earlier gives new solutions to these problems. In 

specific case, blocking point-to-point communications between SPEs can be used. It 

will then only uses CPU time of the concerned SPE and achieve higher performances. 

[1], and many others, propose other efficient techniques for locking access to 

part of the memory. Some of them may be used to enhance the previous algorithm.  

Some research will be done on the Atomic Cache Unit of the SPE which provide 

an atomic way to write in the memory and be instantly shared with the other SPE. 

In this kernel, we will only implement semaphores as they also cover mutexes. 

However, with a few tweaks to scheduling, the same algorithms could be used for 

conditions. 

 

 

 

10.4.1.2 Operating System Resources 

 

More than synchronisation, processes need access to resources: mainly access to 

the peripherals and their interrupts, timers, etc. 

Linux here once again uses system calls to have the PPE doing the work. And 

once again, it is working but not in the most efficient way. 

According to [32] indicates, the Cell architecture does not provide hardware 

support to route interruptions to a SPE directly. Therefore it is necessary that the PPE 

deals with them. However, the PPE does not have to treat more than the interrupts. 

The Cell integrates communication channels between the SPE and the PPEs and can 

thus “forward” the interrupt to the concerned SPE. It is important that only one SPE is 

linked to an interrupt as a peripheral cannot be accessed by more than one core at the 

same time. 

This system allows deferring the peripheral treatment only to the concerned 

core, leaving the other unchanged and being more efficient. This is only possible 
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when one single core needs access to the peripheral. If the peripheral is shared, the 

PPE would have to do the treatment as Linux does already. 

In this kernel, we will not implement a real-time access to resources. Linux 

functions and drivers will be used to access the peripherals. Therefore, the kernel I/O 

will not be real-time. 

 

10.4.2 Real-time Scheduling 

 

Scheduling is the most critical part of an operating system and even more 

critical in the case of a real-time one. The scheduler has to choose an execution order 

of the processes depending on their priority, and their deadlines. 

Scheduling on a single CPU has now been used for years and there are many 

optimal algorithms like the round-robin described by [42]. However, scheduling on a 

multi-processor is a much difficult problems. 

Most of the multi-processor (or multicore) systems like the one used by [15] 

uses Symmetrical Multi-Processing (SMP) kernels which means each processor has its 

own kernel and each of them does it own scheduling, falling back to the single CPU 

scheduling case. 

As [83] described, scheduling on shared-memory multiprocessor implies taking 

in account the cache (here the local stores), as it is really time-consuming to reload all 

the data when a processes is moved to another SPE. 

[62] propose an interesting approach of scheduling: instead of taking only 

processor requirements into consideration, they consider the whole resource 

consumption (CPU, peripherals, mutexes). They provide a heuristic algorithm which 

can dynamically schedule a set of tasks. As said earlier, the software would run only 

on SPE and the kernel on the PPE. This algorithm is thus really interesting as the PPE 

has unused computation power which can be used for an efficient scheduling. As said 

earlier, such algorithms may not prove useful in a hard real-time kernel; therefore they 

will not be implemented in this kernel. However they may be discussed as an 

improvement for a more generic purpose of the Cell. 
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10.5 Research areas 

 

• Heterogeneous Multicore Architectures 

• Distributed Operating Systems 

• Scheduling for Multicore Processors 

• Shared-memory Multiprocessor Synchronisation 

 

10.6 Aims 

 

Implementing a hard real-time kernel for the Cell Broadband Engine 

 

 

 

10.7 Objectives 

 

• Research and discuss Linux implementation on SPEs. 

• Specify and develop a virtual kernel using Linux as a non real-time hypervisor. 

• Research, design and implement a scheduling algorithm to manage the SPEs 

• Research, design and implement semaphores for the SPEs 

• Test system performances and compare to existing real-time kernels. 

• Research and discuss possible algorithms to achieve higher performances and 

more generic purpose. 

 

10.8 Relationship to course 

 

This project covers the major area taught in the courses. It requires a good 

understanding of real-time kernel as well as concurrent programming. 

It will involve conception, programming in C and Assembler, scheduling 

analysis and much more different skills acquired during the two taught semesters. 
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10.9 Resources constraints 

 

As the Cell is not accessible directly, the whole project will be done with a free 

simulator provided by IBM. The development and testing of the software will be 

realised on a Linux workstation running Fedora Core 7.  

Due to the power requirements of the simulator, the work will be realised on a 

rack server I own. Thus, it may prove difficult to show a live demonstration of my 

kernel during the viva. A solution will be searched later, in agreements with both 

markers. 

 

10.10 Proposed Outline of Dissertation 

 

1. Introduction 

2. Subject overview 

2.1. Parallel computers 

2.2. Cell Broadband Engine 

2.3. Real-Time Kernel 

3. Research and design: Theoretical implementation 

3.1. Interfacing with Linux 

3.2. Task allocation 

3.3. Scheduling 

3.4. Semaphores 

4. Results of the implementation 

5. Performances 

5.1.1. Results 

5.1.2. Analysis of weak points 

5.1.3. Comparison with Linux 

6. Discussion of possible enhancements  

6.1.1. Achieving higher performances 

6.1.2. Achieving a more general purpose 

7. Possible usage 

8. Conclusion 
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Note: Sub points have been used in this outline to regroup points matching a 

same topic. However, depending on the project, some of them may become proper 

chapters. 

  



 

 XIV 

10.11 Schedule of activities 

 

Task# Task Duration Beginning  End  Predecessors 

1 Get ready for development 6 days 19/05/08 26/05/08 

 

2 

Install Fedora core 7, Cell SDK, Development tools 

and Simulator 2 days 23/05/08 26/05/08 

 3 Read IBM Documentation about the Cell 4 days 19/05/08 22/05/08 

 4 Interfacing with Linux 8 days 27/05/08 05/06/08 1 

5 Analyse Linux implementation on the SPEs 3 days 03/06/08 05/06/08 

 

6 

Analyse how to implement the virtual kernel 

within Linux 5 days 27/05/08 02/06/08 

 7 Virtual kernel structures 10 days 06/06/08 19/06/08 4 

8 Research and design the kernel structures 7 days 06/06/08 16/06/08 

 9 Implement the basic structures 3 days 17/06/08 19/06/08 8 

10 Scheduling 15 days 20/06/08 10/07/08 7 

11 

Research and design task allocation and 

scheduling algorithms 10 days 20/06/08 03/07/08 

 12 Implement scheduling 5 days 04/07/08 10/07/08 11 

13 Synchronisation 15 days 11/07/08 31/07/08 10 

14 Research and design semaphore algorithm 5 days 11/07/08 17/07/08 

 15 Implement semaphores 10 days 18/07/08 31/07/08 14 

16 Tests (includes program writing) 5 days 01/08/08 07/08/08 

 17 Test SPE Scheduling 3 days 05/08/08 07/08/08 12 

18 Test SPE synchronisation 2 days 01/08/08 04/08/08 15 

19 Performance Tests 7 days 08/08/08 18/08/08 13;16 

20 Run performance tests 3 days 08/08/08 12/08/08 

 21 Analyse test 4 days 13/08/08 18/08/08 20 

22 Find weaknesses 2 days 13/08/08 14/08/08 

 23 Compare to Linux implementation 2 days 15/08/08 18/08/08 

 24 Overall analysis 10 days 19/08/08 01/09/08 19 

25 Analyse Cell potential for real-time application 3 days 19/08/08 21/08/08 

 26 Discuss possible usage of the Cell 2 days 22/08/08 25/08/08 25 

27 Research and discuss possible enhancements 5 days 26/08/08 01/09/08 

 28 

     29 Write report 76 days 19/05/08 01/09/08 
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