

Northumbria University

School of CEIS

Masters Programme in

Computing

Individual Project

Student Dissertation

2007/2008

NAME: MOREY-CHAISEMARTIN Nicolas

 ii

The copyright of this dissertation rests with the author. No part of it should

be published without his/her prior written consent and information derived from

it should be acknowledged.

I certify that the work contained in this report is the sole work of the author

except where indicated. All material that has been taken from other sources has

been clearly acknowledged. Quotations from other sources have been clearly

marked, using quotation marks or a block quote.

Signature __________________________ Date ______________

 i

Dissertation title:

A Hard Real-Time Kernel for a

Heterogeneous Multicore Architecture:

The Cell Broadband Engine

 ii

Acknowledgements

I would like to thank my supervisor, Adrian P. Robson, for helping me through

my project and refocusing me when needed.

I also would like to thank, the people from IBM, and Ruben Niederhagen from

Aachen University for their advices and numerous ideas.

Last but not least, I would like to thank my family for their support and their

help brining the final touch to my dissertation.

 iii

Abstract

In this dissertation, a design of a hard real-time kernel for the Cell Broadband

Engine is proposed. This design focuses on the problems due to the heterogeneous

multicore architecture on the Cell. Task allocation, scheduling and synchronization

algorithms are discussed to maximize the kernel performances. A particular attention

has been ported to the semaphores as synchronization is a complex problem in a

distributed environment.

A proof of concept, Virt-K, has been implemented over Linux to demonstrate

the efficiency of the design. Timing analysis and performances measurements have

been realized using Virt-K to localize the weak points of the design. Based on the

performances, the design flaws are discussed, solutions are proposed and

enhancements suggested.

It is concluded by proving that a soft real-time kernel can be run on the Cell

Broadband Engine but the results are not conclusive for hard real-time kernels due to

unbounded semaphore acquisition time. Suggestions on further research axes are

proposed.

 iv

Contents

DISSERTATION TITLE: .. I

ABSTRACT.. III

CONTENTS .. IV

1. INTRODUCTION .. 1

1.1 Hypothesis .. 2

1.2 Aims ... 2

1.3 Objectives ... 2

1.4 Dissertation organization ... 3

2. CELL BROADBAND ENGINE AND REAL-TIME KERNEL........................... 4

2.1 The Cell Broadband Engine Architecture .. 4

2.2 Real-Time Kernel ... 12

3. A KERNEL ARCHITECTURE FOR THE CBE .. 16

3.1 General design .. 16

3.2 Task Allocation .. 18

3.3 Scheduling .. 20

3.4 Synchronization – Semaphores .. 21

3.5 Interfacing with Linux .. 26

4. SOFTWARE IMPLEMENTATION ... 27

4.1 Software architecture ... 27

4.2 Implementation specifics ... 31

4.3 Software status ... 33

4.4 Known problems .. 35

5. PERFORMANCES ... 37

5.1 Timing Analysis ... 37

5.2 Performances Tests .. 39

6. WEAK POINTS AND POSSIBLE ENHANCEMENTS 43

6.1 Complex scheduler ... 43

6.2 Shared variables ... 44

7. CONCLUSION .. 46

8. BIBLIOGRAPHY ... 47

9. APPENDIX A – GLOSSARY .. I

 v

10. APPENDIX B – TERMS OF REFERENCE ... II

10.1 Background Information .. II

10.2 Project Outline ... III

10.3 Review of the Cell Broadband Engine ... IV

10.4 Real-Time Operating Systems .. VII

10.5 Research areas .. XI

10.6 Aims ... XI

10.7 Objectives ... XI

10.8 Relationship to course .. XI

10.9 Resources constraints .. XII

10.10 Proposed Outline of Dissertation ... XII

10.11 Schedule of activities ... XIV

 vi

Table of Figures

Figure 2-1 - The Cell Broadband Engine ... 5

Figure 2-2 - Power Processing Element (PPE) .. 6

Figure 2-3 - Synergistic Processor Element (SPE) .. 7

Figure 2-4 - Element Interconnect Bus Topology .. 9

Figure 2-5 - Four CBE System ... 9

Figure 2-6 - Photo of the Cell Broadband Engine .. 11

Figure 3-1 - Kernel Overview .. 17

Figure 3-2 - Local Store Memory Map .. 19

Figure 3-3 - State representation of a semaphore acquisition using the ACU ... 23

Figure 3-4 - Priority Inheritance ... 24

Figure 4-1 - Software architecture .. 30

Figure 4-2 - Example of PPE/SPE communications through mailboxes 32

Figure 4-3 - IBM Cell SystemSim Simulator ... 33

Figure 5-1 - Semaphore Lock Times .. 41

 1

1. Introduction

In the late years, microprocessor founders have had trouble following the

 Moore Law. Not only they have had to face physical problems due to the

 size of transistors but also what is called the “Memory Wall” [88] due to the

 memory latency and cache misses. Numerous new ideas have been tried to

 solve this problem but only few were successful. Classical multicore

 architectures, like Intel Core Duo, have managed to achieve greater

 performances but memory accesses are being more critical than ever.

However as described in [35], STI, the union of Sony, Toshiba and IBM,

 has worked since 2000 on this problems and has found a working solution:

 the Cell Broadband Engine, commonly called Cell. The results of the Cell will

not be discussed here but they can be found in [86] .

The Cell thus has many interesting aspects. It has been made as a replacement

for personal computers architectures (x86, x86_64) but is also a powerful parallel

calculator. It is being currently used in the Playstation 3, but also in multiprocessor

computers and soon in clusters.

Parallel computing has been a research subject for many years now, but its

application to real-time systems has always been problematic as many processors

often imply large power consumption. The Cell may change this as IBM clearly

indicates in its official articles, [35] among others, “The Cell processor should provide

extensive real-time support”. Further references to real-time support can also be found

in the technical documentation of the Cell (i.e. [29]). STI has also announced,

according to [80], a lighter version of the Cell for embedded hardware and

 real‐time usage

The few research done on real-time for the Cell have been on efficient

computing algorithm as MPEG compression, ray tracing, terrain rendering, but none

of them has clearly answered the question of the feasibility of a real-time operating

system for the Cell.

 2

1.1 Hypothesis

The hypothesis of this project is:

“Can an efficient hard real-time kernel be implemented on the Cell?”

1.2 Aims

The aim of this project is to prove the hypothesis. A hard real-time kernel will

be designed and then implement as a virtual kernel for the Cell, running as a Linux

program.

The two criteria to prove the hypothesis are the feasibility of a real-time kernel,

and its efficiency:

- The feasibility can be seen through the possibility of running processes,

synchronizing and scheduling them successfully.

- The efficiency criterion is mostly the predictability of the kernel. All the

common kernel tasks should have predictable runtimes.

1.3 Objectives

• Research and discuss Linux implementation on SPEs1

• Specify and develop a virtual kernel using Linux as a non real-time hypervisor.

.

• Research, design and implement a scheduling algorithm to manage the SPEs

• Research, design and implement semaphores for the SPEs

• Test system performances and compare to existing real-time kernels.

• Research and discuss possible algorithms to achieve higher performances and

more generic purpose.

1 SPE stands for Synergistic Processor Element. See Chapter 2.1.3 for more details.

 3

1.4 Dissertation organization

In Chapter 2, the subject is introduced with an overview of the Cell Broadband

Engine and of real-time kernels to define the environment of the project and ease the

understanding of the work done.

In Chapter 3, a design of a hard real-time kernel for Cell Broadband Engine is

proposed. The design focuses on high performance scheduling and synchronization.

In Chapter 4, the implementation of the proof of concept is discussed. An

overview of the software architecture and its specificity are given.

In Chapter 5, a timing analysis of software is provided and confirmed by a

practical performance tests.

In Chapter 6, the weak points of the design are studied. Solutions and

enhancements are suggested.

In Chapter 7, conclusions from the previous analysis are given and new research

axes are proposed.

 4

2. Cell Broadband Engine and Real-Time Kernel

To fully understand the implication of this project, a small background on the

Cell processor and real-time kernel is needed.

2.1 The Cell Broadband Engine Architecture

The Cell Broadband Engine Architecture (commonly called CBEA) has been

standardized by IBM in 2005. Its first implementation is the Cell Broadband Engine

(called CBE) which is the support platform of this project.

The development of the CBEA itself started in 2000 by the union of Sony,

Toshiba and IBM in order to solve the common problems of current architectures

(x86, Itanium). The CBE was developed at the same time as an example of the CBEA

to be implemented in the Playstation 3. The following description will be focused on

the CBE as it is currently the only implementation of the CBEA. The main difference,

concerning this project, is that the CBEA does not specify a number of processing

elements. Processor with many processing elements may appear for high-

computational needs, but also smaller ones for embedded applications.

2.1.1 The Cell Broadband Engine

The Cell, as described by [32], consists of 9 cores on a single chip. One of them

is the PPE (PowerPC Processor Element), and the other eight are advanced

computational units called SPE (Synergistic Processor Units). All these processors are

linked by a high data-rate bus called EIB (Element Interconnect Bus). The SPEs and

the EIB are the keys to the Cell success as they provide a considerable amount of

computational power without neglecting the memory wall problem.

 5

Figure 2-1 - The Cell Broadband Engine

2.1.2 PowerPC Processor Element (PPE)

According to [29], the PPE being the central element of the Cell is in fact an

enhanced PowerPC 64bits core. Thus, using well known technology, STI has

guaranteed some compatibility with existing softwares.

In the current Linux version running on the Cell, the PPE is the only core used

by default. However softwares can choose to send tasks to the SPEs. The problem

with this solution is that, although all the previous PowerPC software can be

executed without any changes, a lot of the SPE computation time is wasted as few

software are using them.

The main role of the PPE, fixed by the design [32], is to host the operating

systems as it has full access to all hardware.

 6

Figure 2-2 - Power Processing Element (PPE)

2.1.3 Synergistic Processor Elements (SPE)

The SPE is a highly advanced 64 bits computational unit using SIMD (Single

Instruction Multiple Data).

The main difference between PPE and SPE, more than the restricted instruction

set of the SPE, is the way they access memory [27]. Where the PPE uses the same

standard access (cache L1 and L2) as other processors, the SPE has its own local

memory. As [29] indicates, each SPE owns a 256 kilobytes Local Store.

Another critical difference is that a PPE accesses the memory “on the fly” which

means the data are retrieved from memory to the cache at the moment they are

needed. However, the SPE owns a MFC (Memory Flow Controller) which can retrieve

data asynchronously through DMA transfers. The MFC is given a list of memory area

to load or store and will do it as soon as the hardware makes it possible. Therefore,

the SPE can pre-fetch the data it will need before it actually needs it. This may seems

really simple, but it is a solution to the memory wall as mentioned earlier. The

 7

memory latency is not a real problem anymore as the SPE does not have to wait for

its data to keep running. To be more precise, data being prefetch, the program will

not encounter cache misses, and then run faster. In the case of a single process

running on a SPE (isolated and non-pre-empted), it is possible to calculate exactly

response time within the SPE. As every instruction has a know execution time and so

does the Local Store access, the execution time of a function can be calculated at a

SPE cycle precision.

Moreover, it is fully possible to imagine a pre-allocation of data in the Local

Store having a task ready to run as soon as a signal (intern or external event) arrives,

avoiding a costly context switch. By sharing the Local Store, several processes could

be stored at the same time. Context switch in this case would only require saving the

different register.

For a soft real-time usage, the same principle could be applied by adding

paging functions to send back some processes to the main memory if needed.

Context switch would still be less costly than copying the full Local Store to the main

memory and the average response time would stay quite low.

Figure 2-3 - Synergistic Processor Element (SPE)

 8

More than the Local Store, each SPE is provided an Atomic Cache Unit (ACU) to

manage concurrent access to the main memory. The ACU acts like cache memory. If

a memory area is in the ACU of a SPE, and if another SPE tries to access it, it will

retrieve the value stored in the other SPE ACU. Concurrent modifications can be

detected by hardware as a “dirty” bit is set when trying to store back in memory a

value which has been modified by another SPE.

The SPE are also provided with three 32bits mailboxes. Two of them are

outbound, one for message, the other for interruption and can send message to the

PPE, other SPE or even peripherals. The third one is a four entry inbound mailbox to

receive messages from these other elements.

2.1.4 Element Interconnect Bus (EIB)

To connect all the elements of the CBE, an advanced high data-rate bus has been

designed. This bus, called Element Interconnect Bus or EIB, is in fact composed of 4

16-bytes wide circular unidirectional channels which counter-rotate in pairs.

These channels can execute up to three memory transactions at once if the

configuration allows it. These channels work in a similar way to a token-ring network.

The EIB is optimized to transfer large amount of data as each transaction transfers

128bytes (8 transfers on 16bytes wide). The concurrent accesses to the bus are

managed by an arbiter. In the current CBE implementation, the first SPE has the

priority on the second, the second on the third, etc.

In theory the EIB can achieve a peak data bandwidth of 204.8GB/s. A peak

bandwidth of 197GB/s has been achieved by IBM [14].

 9

Figure 2-4 - Element Interconnect Bus Topology

2.1.5 Other Elements

For its external communications, the CBE uses two Flex IO interfaces and a

XDR memory controller.

The FlexIO interface is a 48bits bus running at double clock speed. Their

theoretical bandwidth is 76.8GB/s, about ten times faster than an AMD64. This bus is

dynamically configurable and eases the use of the Cell in different environments.

Moreover, one of the two FlexIO interface can be used to interconnect CBE. Theses

connexions can either be done directly between two CBE or using a BIF (CBE

Interface Protocol) switch.

Figure 2-5 - Four CBE System

 10

The CBE was designed to use XDR Ram as memory, although the latest CBE version,

used in the Roadrunner cluster, is compatible with DDR. The advantages and

drawbacks of both memory will not be discussed here.

2.1.6 Further details

The CBE and its new architecture, first produced in 2005, is still a subject of

research.

More than looking for efficient algorithm using its full potential as [37],[58] and

[6] , many laboratories are working on possible implementations and how to

enhance the current Linux for CBE.

[39] proposes an implementation of MPI (Message Passing Interface) on the

CBE. MPI is necessary to work efficiently on multiprocessor Cell computers. They

have implement blocking point-to-point communications on the current Linux for

that. But more than that, the techniques they used are interesting for SPE

synchronisation (mutexes semaphores). It will be discussed in more details later in

this review.

 11

Figure 2-6 - Photo of the Cell Broadband Engine

 12

2.2 Real-Time Kernel

Real-time kernels are a subfamily of kernels. A kernel is a transparent

“program” that manages the entire system.

When a computer is started, an operating system is loaded. This system can be

user-oriented as Linux, Windows or Solaris, real-time as eCos or µC/OS II, database-

oriented, and so on. Linux is a specific case as some variations of the original kernel

have been modified to fit real-time purposes.

Any set of systems with their own constraints may have a specific operating

system fitting their needs. An operating system is not only a set of applications

available to the end-user whether it is human or software. An operating system also

includes a kernel.

The kernel configures the CPU, the peripherals, allows processes to

communicate between each other, and allows network communication. Moreover, the

kernel allows starting processes, managing, synchronizing and stopping them. A

kernel is the key to have a functional multi-programmed system.

Kernels can be sorted in two categories. A kernel can be monolithic, meaning

that all the functions it provides are included in the kernel itself. Or it can be a

microkernel where only the most basic functions are provided by the kernel. The other

ones are provided through higher-level programs. There have been endless debates

about which type of kernel to use and no clear verdict. For more information about

both types of kernel, the debate [79] between A.S. Tanenbaum (creator of Minix) and

Linus Torvald (creator of Linux) is of the most interesting.

This is not a problem here as this choice is not necessary for the lower level of

the kernel which is the main concern of this project.

There are three elements in a kernel that are necessary and sufficient to run a

multiprogrammed system:

- Task management functions, to create and allocate processes

- A scheduler to manage the process ordering on the CPU

- Synchronization functions so that the processes can exchange information.

 13

To get back to real-time kernels, they are slightly different from the other

kernels. The problem is that people strongly disagree on the exact definition of a real-

time kernel. But the most important point is that it should be predictable. This means

that every action must be realized within a specified deadline provided by the kernel

manufacturer. It allows the developers to predict the worst-case behavior of the

system and ensure that even if things go as slow as they can, their task will be

completed within the deadlines.

2.2.1 Task Management

To run applications, it is necessary at first to create them in the kernel. When a

process is created (often by another process), it needs to be registered within the

kernel and be allocated some memory space. The process data and its instructions

must also be loaded in memory. This is called task or process allocation.

When these steps have been fulfilled, the process can be started. Then, the

process may be running (in running state) but not actually on the CPU. This is

explained in 2.2.2.

2.2.2 Real-Time scheduling

The key element of any kernel, and most critical for a hard real-time one, is the

scheduler. A scheduler is a kernel function that manages the execution of multiple

processes on one or more CPU.

In a regular personal computer, there is between 1 and 4 CPU, so 1 to 4

processes can run simultaneously. However, there is always dozens of processes

running concurrently, the GUI, power management, applications, games… They

cannot obviously all run on a CPU at the same time. This is where the scheduler plays

its role. It manages the processes list, affect some to CPU, and sometimes preempt

(remove it from the CPU, saving its current state) them to run other ones.

There are many scheduling algorithms depending on the type of system they

will be used for. A database system (I/O oriented) will not be scheduled the same way

as a system calculating Pi decimal.

 14

 Interactive systems (Windows, Linux…) tend to have fair scheduling policy. It

means that they try to maximize the system performances over time without keeping a

process too long away from the CPU, which would look like a really slow application

from a user point of view. If a process has been running on a CPU for more than a

specified time, the kernel preempt it, store it with the other processes waiting for CPU

time, and choose another one to start.

In most of the real-time operating systems, interactivity is not a concern. A real-

time scheduler focuses on fulfilling the processes functions within their deadlines. As

deadlines and computation times are rarely available to the scheduler, the scheduler

must always run the highest priority process. Thus if a high priority process runs for a

few minutes, the lower priority processes will not obtain any CPU time and will seem

frozen. In certain RT kernels, it is possible to run several processes with the same

priority level. In these cases, they often share CPU time, using round-robin or other

equivalent algorithms.

To be able to manage processes, the scheduler needs to have some information

about them: its address in memory, where is store the execution code, its data, its

priority, and most importantly its state. A process is not necessary running or ready to

run. A process may have been created, but not yet started as its information is still

being filled. A process can also be waiting for a resource, or synchronization, and thus

running it would be a waste of time.

2.2.3 Synchronization function

A kernel has to provide synchronization function so processes can exchange

information between each other.

On personal computers, it seems that processes are running simultaneously on the

CPU as it is possible to work in a text editor, while listening to music and copying

file. The sensation is due to the scheduler which allows processes to obtain a CPU

time slice at a high frequency. Thus even if two processes have the same number of

instructions between two synchronization points, it is highly probable that they will

not pass them at the same time, except if they use synchronization functions provided

 15

by the kernel. Some kernels provide barriers where a process will stop until a specific

event is received.

Another type of necessary synchronization is to manage simultaneous access to

shared data in memory. The classic example of the cash point [78] illustrates perfectly

this need.

Depending on the kernel theses functions can differ. Their numbers are limited

but they are not necessary all available. At least, one mutual exclusion function is

necessary (semaphores, mutexes or spin-lock) to be able to run several tasks with

shared data.

Note that the kernel itself may use these synchronization functions, as in multi-

processor systems, several access to a critical kernel code section can be attempted.

 16

3. A Kernel Architecture for the CBE

The main focus of this chapter is to define a theoretical implementation of the

kernel for the Cell. Efficient algorithms will be described although they may not be

implemented in this project.

3.1 General design

Symmetrical Multi-Processing is the most common approach on multiprocessor

systems. [15] has shown that it is possible to develop SMP kernel in heterogeneous

environment. It may be possible to run a SMP kernel on the CBE however

performances would not be so good.

The SPEs and their Local Stores are the strength of the CBEA regarding

performances and predictability. However, they may introduce extremely long context

switch time. In a regular SMP kernel, all the system calls are handled by the processor

the task is running on, after a context switch saving the process data and loading the

kernel code. On the CBE, this approach means, depending on task allocation and LS

management, that the LS would have to be transferred completely to the memory and

back at every system call. This means at least 512k bytes transferred on each system

call, plus the kernel code that needs to be loaded. With statically defined tasks, it may

not be necessary to transfer all the LS back and forth each time. The transfer size

could be reduced to the used size in the LS.

The SMP approach thus does not fit the Cell at all for a hard real-time kernel.

The idea of this project is to let the SPEs run computational task while the PPE

runs the kernel. The kernel being the only process running on the PPE would then

have small response time, and would be able to run complex algorithm for scheduling

if needed.

 17

PPE

SPE

Local Store

Local Kernel Functions

Process 1

Process 3

Process 2

Process 2

Kernel

Real-Time
Scheduling

Synchronization

Task Allocation

Figure 3-1 - Kernel Overview

 18

3.2 Task Allocation

One of the first concerns in designing the kernel is the tasks or processes. The

way they are designed will strongly influence the scheduling and synchronization

algorithms.

As said earlier, the SPE Local Stores are problematic for memory context switch

as cache memory would be on a regular multi-processor [83]. The task allocation

system has thus been designed to minimize the number of memory context switch

needed, and in this case, bring it down to zero.

The Local Stores were designed for the Cell to run as a high-end processor.

Compared to the Gigabytes of memory available, a 256k Local Store is small and may

not be sufficient to fit a single task. However, the Cell is used here as an embedded

processor. The point of embedded real-time systems being efficiency, the tasks

programs will, in most of the cases, be small. Thus it should fit in the Local Store and

not even use it all.

The idea behind this kernel is to statically allocate processes, not to a SPE, but

to a precise area in a SPE Local Store. This area would have to be statically defined

during the system compilation.

At system startup, the process code would be loaded within this area. The area

may be wider than the code requires to store variables, the process stack, and the

register value for context switches.

By this mechanism, the memory exchange between Local Stores and the main

memory are drastically reduced. Once loaded, the only exchange needed would be for

run-time kernel function (system calls, semaphores…). Context switch simply consist

in saving all the registers at the appropriate area in the LS, and load the new ones.

The number of task that can be allocated in a Local Store will obviously depend

on the task code. Note that if these programs use all the 128 128-bit registers of the

SPE, less than 128 contexts fit in the Local Store. The number of available register

may be limited at compilation to limit memory usage.

Some kernel functions will also have to be stored on the Local Store. These

functions will run in user mode so no context switch is needed. They will allow

communication with the other processors (SPEs and PPE), and the kernel to execute

 19

certain functions not available from the PPE, such as managing semaphore. The

context switch function, triggered by the PPE also resides in this area.

Following is a representation of a Local Store memory map. The kernel function

is the only constant part of any LS. Depending on the system compilation, the number

of task, the code, variable and task size may change.

SPE Local Store

 Kernel API Code

 Kernel API functions

 Kernel API variables

 Code

 Task 1 Variables

 Context Save Area

 Stack

 Code

 Variables
 Task 2

 Context Save Area

 Code

 Variables

 Task 3

 Context Save Area

 Stack

 Figure 3-2 - Local Store Memory Map

 20

Following these criteria, a task structure can be defined. To allow the kernel to

manage the task, this structure should include:

- The SPE to which the task belongs to

- A pointer to the code area

- A pointer to the variable area

- A pointer to the context save area

- A pointer to the initial stack address.

The kernel functions being always loaded in the space area of the Local Store,

tasks can access these functions through a direct pointer defined during the

compilation.

3.3 Scheduling

Once tasks have been created and allocated to a SPE, it is necessary to schedule

them. There are many possible scheduling algorithms for real-time systems.

Moreover, the PPE being only used for the kernel, implementing high complexity

algorithm can be a viable solution. Such algorithms are proposed in [49],[62],[36] and

[55].

However, in order to keep response time as short as possible, a simple algorithm

is used. One of the most common algorithms is a priority driven preemptive scheduler.

In such a scheduler, the highest ready priority task is always running. If a task

with a higher priority than the one currently running becomes ready, the running task

is preempted, store in memory as a ready task, and the new task is started on the

processor.

By using structures equivalent to the one used by the Linux kernel [7], it is

possible to achieve a O(1) priority algorithm. This means that the execution time does

not depend on the number of tasks ready to run. Such algorithms achieve low and

constant response time. To achieve such results, the scheduling algorithm uses a ready

task queue per SPE. The task queue is stored in an array, indexed by their priority.

With a priority driven scheduling algorithm, finding the next process to run is simply

a matter of finding the highest priority in the array pointing to a process and execute

 21

it. The algorithm complexity thus depends on the number of priorities and not on the

number of processes.

However, unlike Linux, it does not seem appropriate to introduce round-robin

algorithms for processes of equal priorities. Round robin algorithms need periodical

interruptions for each of the SPE which would be difficult to implement and also

putting a much heavier load on the PPE, already managing 8 scheduling algorithms

and the synchronization functions of the SPE. Moreover, even with the tasks being

statically allocated in the Local Stores, context switching is still a long task requiring

inter processor (PPE and SPE) communications, saving hundreds of registers. Thus, a

round robin algorithm would slow down the overall system reactivity and render the

system predictability more difficult to establish. Therefore, this kernel will never have

more than one process per SPE running at a specified priority.

As tasks are statically allocated to a SPE, there is no problem of task repartition

in the scheduler to homogenize processor usage, as there is on SMP kernels.

Therefore, the scheduler is scheduling each SPE as an independent processor. Data

structures must then be duplicated to fit the number of SPE. Each SPE will have its

own task list and no other SPE can access or modify it. Although, due to

synchronization, a SPE might get a task ready on another SPE but these cases will be

managed by the kernel, on the PPE, and described in 3.4.

3.4 Synchronization – Semaphores

Synchronization is the most critical and difficult part of the kernel. More than

requiring low response time and predictability, it influences scheduling. When a task

is denied access to a critical resource or section of the code, it requires changing its

state and putting it in a queue, waiting the resource to become available.

Among the many usual synchronization functions, the semaphores have been

chosen to be implemented in this kernel. By successfully implementing semaphores, it

will be proven that mutexes and conditions can also be efficiently implemented on the

Cell.

 22

3.4.1 Hardware implementation

The first concern specific to the Cell is about the way SPE lock and release the

semaphores. On a regular mono-processor kernel, the semaphores are dealt with

system calls. It means that the kernel is locking or releasing the semaphores when

asked by a task. The task is blocked while the system call is executed.

The problem of this approach on the Cell is that we have only one kernel,

running on the PPE. System calls, through interrupts or messages, are thus much

slower than on a single processor. Moreover, with 8 SPE potentially requesting

semaphores, the PPE might become overloaded, or drastically increase the response

times.

Using only the SPE is also impossible. To run efficiently, the semaphores

influence the scheduling using priority inversion techniques among other things.

Therefore a mixed solution has to be implemented. If no action from the kernel

is necessary, the SPE will use their Atomic Cache Unit (ACU) [29] which is a small

cache containing 6 lines of 128 bytes. The SPE can thus simulate atomic operation on

shared-memory by verifying the cache line is not dirty when sending it back to the

central memory.

Other actions that require the kernel will use blocking and non-blocking system

calls. System calls can be implemented in multiple ways. The simplest one is to use

the mailbox provided by the Cell to communicate between the PPE and the SPE.

However, according to general opinion, this is not the fastest solution.

The most common approach is to use in parallel the Stop-and-Signal function of

the SPE, and Direct Problem-State Register Access (DPSRA). Basically, the SPE

saves the value of the system call in one of its user register. It then executes the stop-

and-signal function which stops the SPE and sends a signal (interrupt) to the PPE. The

PPE then handles the interrupts by retrieving the system call value through DPSRA,

which is a DMA transfer of a SPE user-state register to the PPE cache.

The problem of this last approach is that the SPE is stopped until the system call

is executed. For blocking system calls, this solution is working. But not for non

blocking system call. A simple signal would not be working either. The SPE running,

the user register may be rewritten before the PPE had time to access it.

 23

Therefore both of the previous solutions shall be implemented. The stop-and-

signal used for blocking system calls and the mailbox for non-blocking system calls.

Retrieve semaphore value

If semaphore is locked,
warn the PPE the task is now pending

If semaphore is not locked, modify its value.

Commit the semaphore

Commit successful.
Warning the PPE the semaphore is locked

Lock successful

If commit failed, try again

Stop the SPE,
so the kernel can switch context

Task has been restarted.
Trying to acquire the semaphore again

Figure 3-3 - State representation of a semaphore acquisition using the ACU

3.4.2 Priority Inversion

As said earlier, the semaphores influence the scheduling. Here is why: Let’s

imagine a single processor running a preemptive priority driven scheduler. 3 tasks (p1,

p2, p3) have been created on the kernel. We have priority of p1 > priority of p2 >

priority of p3. Therefore if the 3 tasks are ready, p1 will be the one running.

 24

At the time t0, only p3 is ready, so the scheduler starts p3. P3 locks a

semaphores and starts running the critical section.

 At this point, p1 becomes ready. As p1 has the highest priority, it starts running.

P1 then tries to lock the semaphore p3 is already using. The semaphore being used, p3

is denied the access to the critical section and is stored in a waiting queue by the

kernel.

Then the task p2 becomes ready and starts running, p2 having a higher priority

than p3. P3 and p1, blocked by the semaphore, will then be blocked until p2 finishes.

The result is a task indirectly blocking a higher priority task (p2 blocking p3

thus blocking p1). This is not acceptable for a real-time kernel. P2 computation time

being unknown, p1 will be blocked for an unknown amount of time and will probably

fail to complete within its deadline. However, p3 blocking p1 is acceptable. P3 is in a

critical section so it can never be preempted by another process which attempts to

access this same section.

The result we would have wanted to obtain for this scenario is p3 starts running

and get into its critical section. P1 become ready and get stored in the semaphore

queue. When p2 gets ready, it stays in the ready queue and does not preempt p3.

When p3 exits the critical section, p1 is freed will run until completion. Then p2 will

be able to complete too.

Figure 3-4 - Priority Inheritance

 25

This solution seems to be contrary to a priority driven kernel. But by introducing

two priorities per task, a static and a dynamic one, this problem can be solved. This

solution is called the priority inversion protocol [66].

The static priorities are the one defined earlier. They are allocated at the task

creation and will never change. Dynamic priorities may change. When a process is not

in a critical section, its dynamic priority is equal to its static priority. However, when a

process is in a critical section, its dynamic priority is equal to the highest static priority

of the tasks in the pending queue of this semaphore. Therefore, no task can be blocked

by a lower priority task.

On a multi-processor kernel, the problem is more difficult. Although such an

algorithm can be used, it presents some problems. A solution has been proposed in

[61], the multiprocessor priority ceiling protocol. More than avoiding unwanted

preemptions, it avoids deadlocks and minimizes the blocking times. The

multiprocessor priority ceiling protocol fits perfectly the requirements of a hard real-

time kernel for the Cell.

3.4.3 Task dispatching

Another complex problem linked to semaphores is the task dispatching

problems. When a task tries to acquire a semaphore which is already fully used, the

task is stored into a pending queue attached to the semaphore. When the semaphore is

released, one of the pending tasks has to be released. The task dispatching problem

consists of choosing which task will be freed.

An interesting solution is proposed in [50].It uses an heuristic solution to

analyze the tasks behavior and give them a priority in the pending queue depending on

this result. However such an algorithm seems unfit for the Cell as the PPE would have

to run heuristic algorithms to analyze the tasks from 8 processors using semaphores.

A simplest approach to the problem would be to free the task with the highest

priority. Although it may be working on a single processor system, it is not adapted to

multiprocessor systems. While the freed process may have the highest priority in the

pending queue nothing ensures that its priority will be higher than the current process

running on the SPE. Thus the process will not be allowed to run and will be put in the

 26

ready process queue. All the tasks still waiting in the semaphore queue will be stuck

until the freed task is allowed to run and complete.

Another simple solution that fit the CBE is proposed here. Each semaphore will

use 8 pending queues, one per SPE. Each of these pending queues will be a priority

sorted list. Once the semaphore is released, the kernel will search for the pending

process having the highest priority and could run immediately if freed. This means

that the sleeping process priority (eventually the dynamic priority he would have if

freed) has to be higher than the priority of the process currently running on its SPE. If

such process does not exist, the highest priority pending process is released.

Such an algorithm is fast (O(1) complexity), easy to implement and predictable.

3.5 Interfacing with Linux

Although the kernel just discussed might be more efficient, a complex kernel is

not necessary to prove the hypothesis. Therefore a simpler version of the kernel will

be implemented. The data structures and the global organization will not change but

some algorithm will be simplified to ease the development process.

A more detailed description of the software is available in Chapter 4.

 27

4. Software Implementation

In this part, the implementation of Virt-K (Virtual Kernel) is described. Virt-k is

a proof of concept of the ideas proposed before. Due to the limited time for this

project, the kernel has not been implemented as low-level drivers, hardware

management function and compilers modules would have to be written. Therefore,

these ideas have been implemented as a virtual kernel running over Linux. As Linux

does not schedule the SPE (once a task is started on the SPE it is never preempted

unless the task asks to), the response times on the SPE themselves are significant.

However, the response times on the PPE are not. The PPE part of the kernel will be

executed as a user task within Linux. As the Linux distribution that is used is not real-

time and running over tasks, the response times it provides may not be significant at

all.

Only the global architecture and features of Virt-K will be described here.

However a more complete documentation of the structure and functions is available

with the sources on the Sourceforge project [56] under the GPLv2 license.

Virt-K has been developed on an x86 Fedora Core 7 using the IBM Cell

Development Kit. All the functionality testing has been realized on the IBM Cell

simulator (systemsim), though the final and performances tests have been done on a

Playstation 3 running Ubuntu.

4.1 Software architecture

The architecture of Virt-K will be detailed into two parts: the PPE part, which is

the kernel, and the SPE part, which is where the users have their tasks running.

 28

4.1.1 PPE – Kernel

As Figure 4-1 shows, the kernel runs multiple threads. Such an approach would

not be realistic for a real kernel as it would be necessary to implement a scheduler for

the PPE. However, it simplifies the development task for this proof of concept.

The first set of threads is necessary in the current Linux implementation to run a

program on a SPE. To start a task on a SPE, it is necessary to call a function which

only returns once the program stops, hence the need of a thread per used SPE.

The other two threads are the real core of the kernel. The scheduler thread

obviously realizes the SPE scheduling. The algorithm is quite simple:

The scheduling algorithm itself has been described in chapter 3.3.

The last thread entitled Mailbox management manages communications

between the PPE and the SPEs. For optimum performance, these functions should not

be done in a thread but in an interrupt handler triggered by the reception of a message

from a SPE. It has been done as a separate thread in Virt-K as it simplifies

synchronizations between the scheduler and the communication parts.

What the mailbox management thread realizes is reading all the inbound

messages, sent from the SPE, modifying some data linked to the task or semaphore if

necessary and sets flags.

For example, when a SPE sends a message to the PPE to make it aware it is

pending for a semaphore, the mailbox thread attaches the SPE task to the semaphore,

calculates the new dynamic priority of the process currently owning it, and sets a flag

so the SPE will be rescheduled.

While (true)
For each SPE

 If Need Reschedule Flag is set for this SPE
 Acquire lock on SPE
 Reschedule the SPE
 Release the lock
 End if

End for each
End while

 29

4.1.2 SPE – User-space

The SPE software architecture is simpler than the PPE one.

The first set of tasks available here is the user tasks plus the null task, a task

which is always ready so the scheduler can always find a task to run. Except for the

null task, all of them are user-defined, depending on their needs.

The other task is the switch task. It is used during context switching.

When the PPE needs to reschedule a SPE, it sends the SPE a message containing a

task identifier. The reception of a message triggers an interrupt on the SPE. The

interrupt handler saves the registers, the stack pointer value and the program counter

(except for the null task). It then returns from the interrupt, not in its original task, but

in the switch task. The switch task reads the message sent by the PPE and triggers a

context restore depending on the task (null task, new task, task already ran).

The switch task has its own context but it is smaller than a usual one. As the interrupt

handler “call” the switch function as returning from the interrupt, it is not necessary to

save the register of the exact stack pointer value. Switching to switch task simply

requires setting the stack pointer to the kernel stack value and jumping to the right

address in the LS.

 30

PPE

SPE

Scheduler

SPE Thread

Mailbox
Management

SPE Thread
SPE ThreadsSPE Threads

SPE
SPE

SPE

User Tasks

Null Task

User Tasks
User Tasks

Switch Task

Mailboxes

Figure 4-1 - Software architecture

 31

4.2 Implementation specifics

As explained earlier, Virt-K is a proof of concept. Therefore, it differs from the

ideas detailed in Chapter 3.

For example, as said in chapter 4.1.1, the kernel is divided into two threads

which are incompatible with a non-virtual kernel.

4.2.1 LS Memory organization

As Chapter 3.2 describes, tasks are statically allocated to a SPE local Store.

However, due to the usage of gcc compiler, and Linux kernel loader, the position of a

task in the SPE is not easily predictable. It could be retrieved from the object file

generated for the SPE but it would be unpractical.

Therefore, few modifications have been made to Virt-K:

- Tasks on a SPE are identified by a byte identifier

- The SPE stores a structure indexed by task identifier to retrieve stack

pointer, program counter and the task status (new / ran)

- Holes cannot be let in the LS to fit the stacks, so tasks are statically allocated

at compilation as global arrays.

- In PPE/SPE communication, the task ID is used instead of a task pointer

4.2.2 PPE/SPE communications

In chapter 3.4.1 was discussed the best implementation for PPE/SPE

communications. It was said that mailboxes are better for non blocking system calls

but that stop-and-signal with DPRSA would be better for blocking system calls.

To simplify the implementation, only the mailbox systems have been used

though for blocking system calls, the SPU is stopped, but the signal is not used.

This results in a slightly slower response time for blocking system calls but it is

not necessary significant compare to the SPU stop and restart time.

 32

SPE PPE

Acquire semaphore

Task 2 has locked semaphore 1

Releasing semaphore

Task 2 has released semaphore 1

Attempting to lock semaphore 2 (already locked)

Task 2 is pending to semaphore 2

SPEstop()

Switch to task 3

SPEstart()

Switching to task 3

Scheduling
SPE

Figure 4-2 - Example of PPE/SPE communications through mailboxes

4.2.3 Conditions

To ease the realization of functional tests, conditions have also been

implemented. They use the same mechanisms as semaphores except that there is no

priority inversion, and when a task signals a condition, all the pending tasks are set

back into ready mode. All the SPU are also rescheduled.

 33

4.3 Software status

4.3.1 Development Environment

Virt-K has been developed under GPLv2 License using C language, except for

the context saves and restores functions which have been written in assembler. Source

and header files are fully documented using Doxygen. The development was managed

and backuped using Subversion.

 All the development has been realized on Eclipse with the Cell SDK plug-in,

running on an x86 Fedora Core 7.

The final execution platform is a Playstation 3 running Linux Ubuntu.

Figure 4-3 - IBM Cell SystemSim Simulator

 34

4.3.2 Development Status

Virt-K is currently available as a release candidate. Though it is incomplete and

still includes some bugs, it has reached a step where it can be used by developers as a

SPE framework.

4.3.3 Optimizations

Virt-K trying to prove it is possible to run an efficient hard real-time kernel on

the Cell, it has been highly optimized. These optimizations are described in the source

comments and in the Doxygen documentation.

For example, a semaphore only needs a single bit to store its value. Therefore,

by using bit fields, up to 8 semaphores per byte could be stored. However, to retrieve

a semaphore, SPE use the ACU which transfer 128bytes. Then if multiple semaphores

are stored in a byte or even in the surrounding bytes, another SPE reading or

modifying this other semaphore would result in removing previous reservation by SPE

other SPE trying to lock other semaphores. Thus, semaphore values are stored in

128bytes array, decreasing the average semaphore acquisition time.

4.3.4 Functional test

In parallel of the development process, intensive testing has been realized. All

the individual pieces (scheduler, context switch, mailbox management, semaphores)

have been tested individually before being merged.

The first stages of the functional testing have been done on IBM Cell Simulator

(SystemSim), which allows cycle by cycle execution and full access to the Cell

registers. The final tests had to be realized on a Playstation 3 due to the low

performances of the simulator.

The entire performance testing has been realized on a Playstation 3.

 35

4.4 Known problems

Although Virt-K is running there are still few problems left. Some of them are

bugs which have not been found yet, but mostly unsolved problems.

4.4.1 Context Restore

This problem is due to the fact that tasks are not statically allocated and the SPE

is managing the context values instead of the PPE.

When a context is being restored, the stack pointer is restored first; all the

registers values are retrieved from the stack. The process needs then to jump back

where it was in the task. However, the SPE instruction set doesn’t provide a function

to jump to an address stored in the LS. This address has to be loaded in a register first,

therefore overwriting the value the register had before being switched. For this

purpose, R127 (128th register) has been sacrificed.

An analysis of object files generated by the compiler has never shown this

register being used.

This problem has not been solved because it is a problem met only in this proof

of concept. On a non-virtual kernel, with statically allocated memory area, the PPE

would be storing the context pointers. Thus when a SPE has restored its stack and

register, it would stop and signal the PPE that it is ready. The PPE would then run the

SPE from the right address, keeping the context untouched.

4.4.2 Semaphores and ACU

As described in chapter 3.4.1, to acquire a semaphore, the ACU is used.

Through the ACU, the SPE acquire a 128-bytes line from the memory through DMA

transfer. The SPE is then free to read/modify its local copy of the value. However,

when the SPE tries to commit it, the ACU check a cache table to see if the value used

 36

by the SPE is still valid (not read or written by any other SPE). In the case of such an

event, the semaphore lock function tries to acquire the cache line again.

The problem of such an approach is that it is not predictable. In a worst case

scenario, several SPE could be trying to lock the same semaphore at the same time. It

would probably results in failure to commit for all of them and have them trying again

to acquire the cache line. This problem will be discussed further in Chapter 6.1.2.

4.4.3 Shared variables

In its current implementation, Virt-K does not manage shared variables. It could

probably be implemented as a user task, though some change in the kernel would be

necessary to allocate memory for these variables.

For the Barber Problem test (see Chapter 5), a quick solution has been

implemented: semaphores are used as shared variables. New functions have been

added to allow reading and saving the variable to the main memory, however there is

no protection against concurrent access. User programs have to lock access to these

variables through a semaphore.

Init:
 Retrieve cache line from memory
 If semaphore is locked
 Send message to kernel
 Stop
 Else
 Semaphore = 0
 Commit semaphore to memory
 If commit was successful
 Return
 Else
 Goto Init;
End

 37

5. Performances

In this chapter, the performances of Virt-K are detailed. Virt-K being a virtual

kernel and running over Linux, the response times of the kernel are not significant.

Therefore, the performance tests have been focused on the SPE side, measuring,

semaphore acquisition, release and context switch times. In the first part, a theoretical

approach of these times is provided. Then, a practical test has been implemented to

retrieve these values.

5.1 Timing Analysis

In this first part a theoretical timing analysis of the critical times in Virt-K is

provided. This analysis is solely based on the software architecture and provides a

worst-case response time. Some hardware dependant (interruption propagation time,

DMA transfer delay) values necessary for these analyses being not available,

constants will be used to provide an approximation.

5.1.1 Context switch

Context switches can be split into 3 parts: saving the context, updating kernel

and hardware status, restoring a new context.

Context saving and restoring have the same organization. After testing which

kind of task has to be saved or restored (null, new or ran task), the necessary registers

are saved/restored.

For the null task, no values are saved. Restoring it simply jumps to the

beginning of the function with the matching stack pointer restored. This stack pointer

is never saved.

For a new task, there is no need to restore a context. The kernel simply loads the

matching stack pointer and jump to the start address.

For a task which had already run, all 128 registers are stored on the task stack,

with the program counter. The stack pointer is saved in the task management structure

in the Local Store.

Thus execution time of context saves and restores are:

 38

•

 _ ℎ_ + _ ℎ

•

Moreover, the switch task resets the interrupt mask and flags, reads the message

from the PPE with the new task ID and retrieves the stack pointer from the Local

Store.

Its execution time is then:

•

Therefore we obtain a global execution time of a context switch of

These values will be discusses in Chapter 6.1.1

5.1.2 Semaphore Acquisition

As described in Chapter 4.4.2, semaphore locks are problematic due to their

unbounded response time.

A formula for semaphore lock response time, when the semaphore is not locked,

is:

As the formula shows, the semaphore lock response time is a recursive formula.

The issue is that the success or failure of the commit action is unpredictable in the

•

•

 39

case of a semaphore used on multiple SPE. Moreover, acquiring and committing

cache lines depends on the use of the EIB. The ACU thought being atomic, uses DMA

transfer over the EIB. Therefore, its speed depends on the EIB usage, which means the

more semaphores are used, the slower a lock is. But also the SPE could already own a

clean version of the semaphore in its cache. There would be thus no data transfer

required to retrieve the semaphore’s value.

This issue will be further detailed in Chapter 6.1.2.

5.1.3 Semaphore Release

Semaphore releases are a much simpler problem than semaphore locks. The

issue of semaphore locks comes from the need of “memory transactions” which can

fail and need to be executed again. However, releasing a semaphore is a truly atomic

action. This action consists of writing the semaphore value in the Local Store, and

committing it to the main memory. The value is not read from the main memory

before committing it, thus removing the need of a transaction system.

The formula for semaphore releases is:

However, as for semaphore locks, the time needed to commit the information to

the memory depends on the EIB usage.

5.2 Performances Tests

Timing analysis is a useful tool for schedulability analysis. However, the

formulas presented earlier include much uncertainty, mainly due to unknown

hardware response time. Moreover, even if such times were available, timing analysis

focuses on the worst-case scenario.

Therefore, practical performance tests have been realized. On the one hand it

gives an approximation of these hardware response times. On the other hand, it

provides the average values, which is much more efficient for performance analysis.

•

 40

5.2.1 Test Case

To test the performances of Virt-K, a well known synchronization problem has

been implemented. It is called the Sleeping barber problem [78].

This problem simulates a barber shop. The barber shop has X barber working, X

barber chairs and Y chairs for waiting customers.

A barber cuts hair as long as there are waiting customers. If there are no waiting

customers, a barber falls asleep on his chair.

When a customer arrives, he sits on a waiting chair. If he is the only customer,

he wakes the barbers. If the customer arrives and there are no waiting chairs, he

leaves.

This problem is simulated by implementing one thread per barber, and one

thread per customer. In this test case, we use 6 SPE. Three of them program one

barber and one customer each. The other three program one customer each. The shop

has 2 waiting chairs available.

This specific problem is particularly adequate as it requires semaphores to

access the number of waiting customers, but also conditions to wake up the sleeping

barbers.

To execute such a problem on Virt-K, functions to read and write variables from

the main memory have been added. They are not part of the regular implementation,

but were necessary to run this test case.

It is also important to note than the implementation of the sleeping barber

problem has not been optimized. This test case focuses on kernel function response

time and not on overall performances.

5.2.2 Timing solution

To acquire precise timing of the kernel function, the SPE decrementers have

been used. They are hardware register decreased at regular interval without any

software requirement.

 41

Therefore, measuring these function times consist of setting the decrementer

value to at the beginning of the function, reading its value at the end and taking the

difference. The rate at which the decrementer decreases is available within Linux

kernel information.

5.2.3 Results

Figure 5-1 presents the results for semaphore lock times. As expected, the

responsive repartition shows two steps:

- One around 125ns which matches cases where the semaphore is already in

the local ACU.

- One around 31µs which matches regular semaphore access from distant

memory

It also shows that there are much higher values. Only the smallest values are

shown but the test cases reported response time over 5ms.

0

20

40

60

80

100

120

140

160

180

200

0
0,

03
0,

06
0,

09
0,

13
0,

16
0,

19
0,

22
0,

25
0,

28
0,

31
0,

34
0,

37 0,
4

0,
43

0,
47 0,

5
0,

53
0,

56
0,

59
0,

62
0,

65
0,

68
0,

71
0,

74
0,

77
0,

81
0,

84
0,

87 0,
9

0,
93

0,
96

0,
99

µ
s

Probability of being slower

Semaphore Lock Times

Figure 5-1 - Semaphore Lock Times

 42

A semaphore release matches a semaphore lock from the local ACU as it

consists of sending a message to the PPE and committing the value to the ACU. Its

execution time is thus around 125ns.

For context switch, values are similar for equivalent switches (no null or new

task). The maximum gap between two context switches is around 20ns and is due to

reading and writing channels (for mailbox and interruption management).

In average, a context switch requires 1.6ms.

These results prove that the Cell Broadband Engine can achieve high

performances as a real-time processor. However, they also highlight some problems

due to the Cell architecture:

-Due to the fact SPE are distributed processors, constant semaphore acquisition

time is extremely hard to achieve.

-Due to the large number of registers, context switches are slow compared to

usual embedded processors. Virt-K however achieves much lower context switching

time than Linux.

These problems will be discussed in details in the next chapter.

 43

6. Weak Points and Possible Enhancements

The proof of concept, Virt-K, has shown some flaws in the kernel designs, and

also provided some useful performance analysis which could lead to performance

enhancement.

6.1 Complex scheduler

The design being focused on minimizing response times, it was decided to

restrict the scheduler to a preemptive priority-driven scheduling algorithm. However,

the sleeping barber test case has shown that even with Linux kernel and over software

running concurrently running on the PPE, its workload is still low.

Therefore, complex scheduling algorithms, as discussed in chapter 3.3 could be

implemented. Response time would probably be slightly increased, but the overall

performances of the system would be greatly increased.

6.1.1 Context Switches

As the performance results shown, a context switch requires about 1.6ms.

Although this is much faster than a full context switch (saving and restoring all the LS

to the main memory), it is still slow.

The number of register to save and restore is what is slowing down context

switches. On an x86 processor, there are only 4 main registers plus a couple for flags,

program counter… The SPE have 128 128bits registers. A solution would be to limit

the number of registers used by a task or at least use this number to save and restore

only the required number of registers.

For example, in the sleeping barber test case, no tasks use more than 13

registers. By using this parameter, Virt-K could save much memory on the stack

(leaving space for only 13x128bits = 208 bytes instead of 128*128bits = 2048 bytes),

but more importantly nearly divide context switch time by 10.

 44

This flaw in Virt-K is only due to its implementation. In a non-virtual

implementation, a restricted context switch algorithm could be easily implemented.

6.1.2 Semaphore Locks

As explained in chapter 5.1.2, and confirmed by the performance analysis,

semaphore acquisition presents a predictability problem. Although in most cases,

semaphore locks are fast, the execution time is not bounded.

Therefore, Virt-K does not fit the requirements for a hard real-time kernel. Hard

real-time kernel requires predictable performance to perform schedulability analysis

and ensure that the tasks will complete within their deadlines.

However, Virt-K and the idea it is demonstrating are still eligible for a soft real-

time kernel. The average low response time for semaphore acquisition allows high

performance, and unpredictability is not critical for a soft real-time system.

A solution to this problem would be to implement semaphore lock through

system calls. Performance would be drastically reduced in average but the execution

time would be bounded and thus predictable. A mix of both solutions could also be

implemented. The SPE would try to acquire the semaphore through the ACU. If the

commit action fails, the acquisition would be done through a system call.

This solution provides the same low execution time as the current

implementation for successful cases, but bound the worst case execution time.

However, it may be difficult to implement as the value is still shared between PPE and

SPE.

6.2 Shared variables

A critical point which appeared during the test case implementation is the

necessity to provide shared variables. The solution used in the test case is not optimal

and should not be used in production.

The Cell and more precisely the SPE provide efficient hardware to solve this

problem. Each SPE owns a MFC which allows asynchronous DMA transfers. Which

 45

means a SPE task can request a data area to be transferred from the main memory and

continue computing other data while it is retrieved in the LS.

An efficient implementation would be to request these data so they are retrieved

when the task needs them. However concurrent access to these data makes it more

difficult.

 As these data are shared variables, other tasks or processor may use them

between the moment the transfer is requested and the values are sent back to the main

memory. Therefore it is necessary to protect this critical section by a semaphore. But

then, by requesting an early DMA transfer to limit waiting time on the SPE, the length

of a critical section is increased which is slowing down the overall performances of

the kernel.

An interesting solution would be to adjust the time at which the DMA transfer is

requested depending on the static task priority. A high priority task needs to be

completed as fast as possible whatever the cost are on the overall performance. So the

DMA request, and the semaphore acquisition, should be done early to ensure the data

will be there when needed. For a low priority task, the request should be done at the

last moment to limit the impact on the system performances.

In the case of Virt-K, it would be necessary to provide shared variables

allocation functions on the PPE, and a mean for the SPE to retrieve those variables

address. However in a non-virtual implementation, as physical address as used

directly (there is no need to use the TLB), address could be hard encoded in the SPE

executables.

 46

7. Conclusion

To conclude, an efficient real-time system can be implemented on the Cell

Broadband Engine. Through Virt-K, it has been proven that running and

synchronizing multiple tasks on the SPE is possible, and that it is mostly predictable.

However, Virt-K failed in being completely predictable and therefore did not

answer the hypothesis. Due to the unbounded execution time of semaphore

acquisition, Virt-K, and the design it is implementing, do not fit the requirements for a

hard real-time kernel. Enhancements have been proposed to bind the upper execution

time; but these improvements either sacrifice performances for predictability, or

provide an extremely wide bound, not significant in most of the cases.

It seems that shared-memory semaphore approach is not adapted to the Cell

architecture. Further research should look at an implementation of message passing

semaphores on the Cell.

An important point is that though the Cell can run soft real-time kernels and

probably hard real-time kernels too, it appears that its purpose is not for pure real-time

systems. Even in achieving extremely high performances by running eight real-time

processors in a single chip, it is only using a small part of its possibilities.

An interesting approach, which seems popular among the Cell community, is to

run both Linux and a real-time kernel on the Cell. As in Linux RT, a real-time kernel

would be running on the PPE and reserve a number of SPE. A regular Linux kernel

would be then running as the lowest priority task in the real-time kernel and could use

the unreserved SPE.

The ideas proposed in this dissertation would fit such an approach though a

scheduler would have to be added on the PPE to allow Linux to run.

For a simple soft real-time system, an implementation like Virt-K would be

sufficient. Running the process within Linux kernel with a high priority would ensure

real-time response time (except for few system calls). Moreover, Linux kernel not

interfering with the SPE execution, allows real-time capabilities too.

To finish, the Cell has real-time capabilities but is much more than a real-time

processor and to fully use its potential, mixed solutions should be considered.

 47

8. BIBLIOGRAPHY

[1] T. E. Anderson, "Performance of spin lock alternatives for shared-memory
multiprocessors," IEEE Transactions on Parallel and Distributed Systems, vol.
1, pp. 6-16, January 1992.

[2] T. E. Anderson, D. D. Lazowska, and H. M. Levy, "The performance
implications of thread management alternatives for shared-memory
multiprocessors," in Proceedings of the 1989 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems,
Oakland, California, 1989, pp. 49-60.

[3] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, "Thread scheduling for
multiprogrammed multiprocessors," in Proceedings of the 10th annual ACM
symposium on Parallel algorithms and architectures, Puerto Vallarta, Mexico,
1998, pp. 119-129.

[4] R. Bealkowski and E. B. Fernandez, "A heterogeneous multiprocessor
architecture for workstations," in Proceedings of IEEE Southeastcon '91,
Williamsburg, Virginia, 1991, pp. 258-262.

[5] A. D. Birrell and B. J. Nelson, "Implementing remote procedure calls," ACM
Transactions on Computer Systems, vol. 2, pp. 39-59, 1984.

[6] F. Blagojevic, D. S. Nikolopoulos, A. Stamatakis, and C. D. Antonopoulos,
"Dynamic multigrain parallelization on the cell broadband engine," in
Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice
of parralel programming, San Jose, California, 2007, pp. 90-100.

[7] D. P. Bovet and M. Cesati, Understanding the Linux Kernel, 1st edn. ed.
Farnham: O'Reilly, 2000.

[8] A. Bricker, M. Gien, M. Guillemont, J. Lipkis, D. Orr, and M. Rozier, "A New
Look at Microkernel-Based UNIX Operating Systems: Lessons in
Performance and Compatibility," in Proceedings of EurOpen Spring 1991
Conference, Tromso, Norway, 1991, pp. 13-32.

[9] P. Brucker, Scheduling Algorithms, 2nd ed. Berlin: Springer, 1999.
[10] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum, "Disco: running

commodity operating systems on scalable multiprocessors," ACM
Transactions on Computer Systems, vol. 15, pp. 412 - 447, November 1997.

[11] R. J. A. Buhr and D. L. Bailey, An introduction to real-time systems : from
design to multitasking with C/C++. Upper Saddle River: Prentice Hall, 1999.

[12] A. Burns, Real-time systems and programming languages: Ada 95,real-time
Java and Real-time POSIX, 3rd edn. ed. Harlow: Addison-Wesley, 2001.

[13] J. B. Carter, J. K. Bennett, and W. Zwaenepoel, "Techniques for reducing
consistency-related communication in distributed shared-memory systems,"
ACM Transactions on Computer Systems, vol. 13, pp. 205-243, August 1995.

[14] CellMicroprocessor, "Cell Microprocessor", 2007.
http://en.wikipedia.org/wiki/Cell_microprocessor

http://en.wikipedia.org/wiki/Cell_microprocessor�

 48

[15] J. Chen and J.-H. Liu, "Developing embedded kernel for system-on-a-chip
platform of heterogeneous multiprocessor architecture," in Proceedings of
the12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, Sydney, Australia, 2006, pp. 246-250.

[16] D. R. Cheriton, "The design of a distributed kernel," in Proceedings of the
ACM '81 conference, 1986, pp. 46-52.

[17] S. P. Dandamudi and P. S. Cheng, "A Hierarchical Task Queue Organization
for Shared-Memory Multiprocessor Systems," IEEE Transactions on Parallel
and Distributed Systems, vol. 6, pp. 1-16, Jan 1995.

[18] E. W. Dijkstra, "The structure of the “the”-multiprogramming system," in
Proceedings of the 1st ACM symposium on Operating System Principles 1967,
pp. 10.1-10.6.

[19] B. P. Douglass, Real Time UML : advances in the UML for real-time systems,
3rd edn. ed.: Addison-Wesley, 2004.

[20] M. Dubois, C. Scheurich, and F. A. Briggs, "Synchronization, Coherence, and
Event Ordering in Multiprocessors," Computer, vol. 21, pp. 9-21, 1988.

[21] I. Englander, The architecture of computer hardware and systems software :
an information technology approach, 3rd edn. ed. Chichester: Wiley, 2003.

[22] R. Finkel and D. Hengsen, "YACKOS on a shared-memory multiprocessor,"
ACM SIGARCH Computer Architecture News, vol. 16, pp. 31-36, 1988.

[23] B. Frey, PowerPC Operating Environment Architecture, 2003.
http://www.ibm.com/developerworks/power/library/pa-archguidev1
[24] B. Frey, PowerPC User Instruction Set Architecture, 2003.
http://www.ibm.com/developerworks/power/library/pa-archguidev1
[25] B. Frey, PowerPC Virtual Environment Architecture, 2003.
http://www.ibm.com/developerworks/power/library/pa-archguidev1
[26] A. Gheith and K. Schwan, "CHAOSarc: kernel support for multiweight

objects, invocations, and atomicity in real-time multiprocessor applications,"
ACM Transactions on Computer Systems, vol. 11, pp. 33-72, 1993.

[27] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T.
Yamazaki, "Synergistic Processing in Cell's Multicore Architecture," IEEE
Micro, vol. 26, pp. 10-24, 2006.

[28] P. Hofstee, "Power Efficient Processor Architecture and The Cell processor,"
in Proceedings of the 11th International Symposium on High-Performance
Computer Architecture, San Francisco, California, 2005, pp. 258-262.

[29] IBM, Cell Broadband Engine Programming Handbook, 2006.
http://www-

01.ibm.com/chips/techlib/techlib.nsf/techdocs/9F820A5FFA3ECE8C8725716
A0062585F

[30] IBM, Celll Broadband Engine Programming Tutorial, 2006.
http://www-

01.ibm.com/chips/techlib/techlib.nsf/techdocs/FC857AE550F7EB83872571A
80061F788

[31] IBM, IBM Full-System Simulator User's Guide, 2006.
http://www-

01.ibm.com/chips/techlib/techlib.nsf/techdocs/B494BF3165274F67002573530
070049B

http://www.ibm.com/developerworks/power/library/pa-archguidev1�
http://www.ibm.com/developerworks/power/library/pa-archguidev1�
http://www.ibm.com/developerworks/power/library/pa-archguidev1�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/9F820A5FFA3ECE8C8725716A0062585F�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/9F820A5FFA3ECE8C8725716A0062585F�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/9F820A5FFA3ECE8C8725716A0062585F�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/FC857AE550F7EB83872571A80061F788�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/FC857AE550F7EB83872571A80061F788�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/FC857AE550F7EB83872571A80061F788�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/B494BF3165274F67002573530070049B�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/B494BF3165274F67002573530070049B�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/B494BF3165274F67002573530070049B�

 49

[32] IBM, Cell Broadband Engine Architecture, 2007.
http://www-

01.ibm.com/chips/techlib/techlib.nsf/techdocs/1AEEE1270EA2776387257060
006E61BA

[33] IBM, Cell Broadband Engine Registers, 2007.
http://www-

01.ibm.com/chips/techlib/techlib.nsf/techdocs/6ED822DD7E97D889872570B
200607EEC

[34] IBM, SPU Instruction Set Architecture, 2007.
http://www-

01.ibm.com/chips/techlib/techlib.nsf/techdocs/76CA6C7304210F3987257060
006F2C44

[35] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D.
Shippy, "Introduction to the Cell multiprocessor," IBM Journal of Research
and Development, vol. 49, pp. 589-604, July/September 2005.

[36] A. Khemka and R. K. Shyamasundar, "Multiprocessor scheduling of periodic
tasks in a hard real-time environment," in Proceedings of the 6th International
Parallel Processing Symposium, Beverly Hills, California, 1992, pp. 76-81.

[37] M. Kistler, M. Perrone, and F. Petrini, "Cell Multiprocessor Communication
Network: Built for Speed," IEEE Micro, vol. 26, pp. 10-23, 2006.

[38] H. Kopetz, Real-time systems : design principles for distributed embedded
applications. Boston; London: Kluwer Academic, 1997.

[39] A. Kumar, N. Jayam, A. Srinivasan, G. Senthilkumar, P. K. Baruah, S.
Kapoor, M. Krishna, and R. Sarma, "Feasibility study of MPI implementation
on the heterogeneous multi-core cell BE architecture," in Proceedings of the
19th annual ACM symposium on Parallel algorithms and architecture, San
Diego, California, 2007, pp. 55-56.

[40] B. L. Kurtz and J. J. Pfeiffer, "A Course project to design and implement the
kernel of a real-time operating system," in Proceedings of the 18th SIGCSE
technical symposium on Computer science education table of contents, St.
Louis, Missouri, 1987, pp. 115-119.

[41] K. Kwangsik, K. Dohun, and P. Chanik, "Real-time scheduling in
heterogeneous dual-core architectures," in Proceedings of the 12th
International Conference on Parallel and Distributed Systems Minneapolis,
Minnesota, 2006, pp. 91-96.

[42] J. J. Labrosse, MicroC/OS-II : the real-time kernel, 2nd edn. ed. Great britain:
CMP Books, 2002.

[43] K. Langendoen, R. Bhoedjang, and H. Bal, "Models for Asynchronous
Message Handling," IEEE Concurrency, vol. 3, pp. 28-38, Apr-Jun 1997.

[44] B. Lee, "Optimizing heterogeneous architecture," EDN, vol. 51, pp. 65-69,
2006.

[45] LeProcesseurCell, "Le Processeur Cell", 2005.
http://www.presence-pc.com/tests/Le-processeur-Cell-366/
[46] J. Levesque, J. Larkin, M. Foster, J. Glenski, G. Geissler, S. Whalen, B.

Waldecker, J. Carter, D. Skinner, H. He, H. Wasserman, J. Shalf, H. Shan, and
E. Strohmaier, "Understanding and Mitigating Multicore Performance Issues
on the AMD Opteron Architecture," Lawrence Berkeley National Laboratory,
pp. Paper LBNL-62500, 2007.

http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/1AEEE1270EA2776387257060006E61BA�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/1AEEE1270EA2776387257060006E61BA�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/1AEEE1270EA2776387257060006E61BA�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/6ED822DD7E97D889872570B200607EEC�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/6ED822DD7E97D889872570B200607EEC�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/6ED822DD7E97D889872570B200607EEC�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/76CA6C7304210F3987257060006F2C44�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/76CA6C7304210F3987257060006F2C44�
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/76CA6C7304210F3987257060006F2C44�
http://www.presence-pc.com/tests/Le-processeur-Cell-366/�

 50

[47] J. Liedtke, "On micro-kernel construction," in Proceedings of the 15th ACM
symposium on Operating systems principles, Copper Mountain, Colorado,
1995, pp. 237-250.

[48] J. Liedtke, "Toward real microkernels," Communications of the ACM, vol. 39,
pp. 70-77, 1996.

[49] C. L. Liu and J. W. Layland, "Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment," Journal of the ACM, vol. 20, pp. 46-61,
January 1973.

[50] V. B. Lortz and K. G. Shin, "Semaphore Queue Priority Assignment for Real-
Time Multiprocessor Synchronization," IEEE Transactions on Software
Engineering, vol. 21, pp. 834-844, 1995.

[51] M. Maniecki, "Universal Real-Time kernel," Microprocessing and
Microprogramming, vol. 14, pp. 161-163, 1984.

[52] C. McCann, R. Vaswani, and J. Zahorjan, "A dynamic processor allocation
policy for multiprogrammed shared-memory multiprocessors," ACM
Transaction on Computer Systems, vol. 11, pp. 146-178, 1993.

[53] J. M. Mellor-Crummey and M. L. Scott, "Algorithms for scalable
synchronization on shared-memory multiprocessors," ACM Transactions on
Computer Systems, vol. 9, pp. 21-65, 1991.

[54] L. Molesky, K. Ramaritham, C. Shen, J. Stankovic, and G. Zlokapa,
"Implementing a predictable real-time multiprocessor kernel - the Spring
kernel," in Proceedings of the 7th IEEE Workshop on Real-Time Operating
Systems and Software, Charlottesville, Virginia, 1990, pp. 20-26.

[55] O. Moreira, F. Valente, and M. Bekooij, "Scheduling Multiple Independent
Hard-Real-Time Jobs on a Heterogeneous Multiprocessor," in Proceedings of
the 7th ACM & IEEE international conference on Embedded software,
Salzburg, Austria, 2007, pp. 57-66.

[56] N. Morey-Chaisemartin, "Sourceforge project : Virt-K", 2008.
http://sourceforge.net/projects/virt-k/
[57] A. Morton and W. M. Loucks, "A hardware/software kernel for system on chip

designs," in Proceedings of the 2004 ACM symposium on Applied computing,
Nicosia, Cyprus, 2004, pp. 869-875.

[58] H. Muta, M. Doi, H. Nakano, and Y. Mori, "Multilevel parallelization on the
cell/B.E. for a motion JPEG 2000 encoding server," in Proceedings of the 15th
international conference on Multimedia, Augsburg, Germany, 2007, pp. 942-
951.

[59] A. K. Nanda, J. R. Moulic, R. E. Hanson, G. Goldrian, M. N. Day, B. D.
D'Amora, and S. Kesavarapu, "Cell/B.E. blades: Building blocks for scalable,
real-time, interactive, and digital media servers," IBM Journal of Research and
Development, vol. 51, pp. 573-582, September 2007.

[60] B. Parhami, Computer architecture : from microprocessors to supercomputers.
New York; Oxford: Oxford University Press, 2005.

[61] R. Rajkumar, L. Sha, and J. P. Lehocczky, "Real-Time Synchronization
Protocols for Multiprocessors

" in Proceedings of the Real-Time Systems Symposium, Huntsville, AL, USA, 1988,
pp. 259-269.

[62] K. Ramamritham, J. A. Stankovic, and P.-F. Shiah, "Efficient Scheduling
Algorithms for Real-Time Multiprocessor Systems," IEEE Transactions on
Parallel and Distributed Systems, vol. 1, pp. 184-194, 1990.

http://sourceforge.net/projects/virt-k/�

 51

[63] M. W. Riley, J. D. Warnock, and D. F. Wendel, "Cell Broadband Engine
processor: Design and implementation," IBM Journal of Research and
Development, vol. 51, pp. 545-557, Sept 2007.

[64] Z. Salcic, P. Roop, D. Hui, and I. Radojevic, "HiDRA: A new architecture for
heterogeneous embedded systems," in Proceedings of the International
Conference on Embedded Systems and Applications, Las Vegas, Nevada,
2004, pp. 164-170.

[65] T. Samuelsson, M. Akerholm, J. Starner, and L. Lindh, "A Comparison of
Multiprocessor Real-Time Operating Systems Implemented in Hardware and
Software," in International Workshop on Advanced Real-Time Operating
System Services, Porto, Portugal, 2003.

[66] L. Shal, R. Rajkumar, and J. P. Lehocczky, "Priority Inheritance Procotols: An
Approach to Real-Time Synchronization," IEEE Transactions on Computers,
vol. 39, pp. 1175-1185, 1990.

[67] K. Shimizu, S. Nusser, W. Plouffe, V. Zbarsky, M. Sakamoto, and M. Murase,
"Cell broadband Engine processor security architecture and digital contant
protection," in Proceedings of the 4th ACM international workshop on
Contants protection and security, Santa Barbara, California, 2006, pp. 13-18.

[68] A. l. Shimpi, "Understanding the Cell Microprocessor," in Anandtech, 2005.
[69] K. G. Shin and C.-J. Hou, "Design and Evaluation of Effective Load Sharing

in Distributed Real-Time Systems," IEEE Transactions on Parallel and
Distributed Systems, vol. 5, pp. 704-719, 1994.

[70] S. G. Shiva, Advanced computer architectures. London: CRC/Taylor &
Francis, 2006.

[71] M. Singhal, Advanced concepts in operating systems : distributed, database,
and multiprocessor. New York; London: McGraw-Hill, 1994.

[72] M. S. Squillante, "Issues in shared memory multiprocessor scheduling: a
performance evaluation," in Department pf Computing Science and
Engineering. vol. Ph.D. Washington: University of Washington, 1990.

[73] W. Stallings, Operating Systems: Internals and Design Principles, 5th ed.
Upper Saddle River, NJ: Prentice Hall, 2004.

[74] J. A. Stankovic and K. Ramamritham, "The Spring kernel: a new paradigm for
real-time operating systems," ACM SIGOPS Operating Systems Review, vol.
23, pp. 54-71, 1989.

[75] P. Stenstrom, E. Hagersten, D. J. Lilja, M. Martonosi, and M. Venugopal,
"Trends in shared memory multiprocessing," Computer, vol. 30, pp. 44-50,
December 1997.

[76] A. Suksompong, "Real-TIme Systems on Multicore Platforms " in Department
of Computer Sciend and Electronics. vol. Ph. D. Eskilstuna: Mälardalen
University, 2007.

[77] A. S. Tanenbaum, Distributed Operating Systems. Englewood Cliffs, NJ:
Prentice Hall International, 1995.

[78] A. S. Tanenbaum and S. Andrew, Modern operating systems, 2nd edn. ed.
Upper Saddle River, NJ: Prentice Hall International, 2001.

[79] A. S. Tanenbaum and L. Torvald, "LINUX is obsolete", 1992.
http://groups.google.com/group/comp.os.minix/browse_thread/thread/c25870d7a4169

6d2/f447530d082cd95d?tvc=2
[80] TheCellRoadmap, "The Cell Roadmap", 2005.
http://www.ppcnux.com/modules.php?name=News&file=article&sid=6666

http://groups.google.com/group/comp.os.minix/browse_thread/thread/c25870d7a41696d2/f447530d082cd95d?tvc=2�
http://groups.google.com/group/comp.os.minix/browse_thread/thread/c25870d7a41696d2/f447530d082cd95d?tvc=2�
http://www.ppcnux.com/modules.php?name=News&file=article&sid=6666�

 52

[81] H. Thielemans, L. Demeestere, and H. Van Brussel, "HEDRA: heterogeneous
distributed real-time architecture," Control Engineering Practice, vol. 4, pp.
187-193, 1996.

[82] A. Tucker and A. Gupta, "Process control and scheduling issues for
multiprogrammed shared-memory multiprocessors," in Proceedings of the
12th ACM symposium on Operating systems principles, Litchfield Park,
Arizona, 1989, pp. 159-166.

[83] R. Vaswani and J. Zahorjan, "The implications of cache affinity on processor
scheduling for multiprogrammed, shared memory multiprocessors " in
Proceedings of the 13th ACM symposium on Operating systems principles,
Pacific Grove, California, 1991, pp. 26-40.

[84] W. Walker and H. G. Cragon, "Interrupt processing in concurrent processors,"
Computer, vol. 28, pp. 36-46, June 1995.

[85] B. Wilkinson, Computer architecture : design and performance, 2nd ed.
London: Prentice Hall, 1996.

[86] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick, "The
potential of the cell processor for scientific computing," in Proceedings of the
3rd conference on Computing frontiers, Ischia, Italy, 2006, pp. 9-20.

[87] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F.
Pollack, "HYDRA: the kernel of a multiprocessor operating system,"
Communications of the ACM, vol. 17, pp. 337-345, June 1974.

[88] W. Wulf and S. McKee, "Hitting the memory Wall," ACM Computer
Architecture News, vol. 23, pp. 20-24, 1995.

[89] J. Zahorjan, E. D. Lazowska, and D. L. Eager, "The effect of scheduling
discipline on spin overhead in shared memory parallel systems," IEEE
Transactions on Parallel and Distributed Systems, vol. 2, pp. 180-198, April
1991.

[90] M. J. Zekauskas, W. A. Sawdon, and B. N. Bershad, "Software Write
Detection for a Distributed Shared Memory," in Proceedings of the 1st
USENIX conference on Operating Systems Design and Implementation,
Monterey, California, 1994, pp. 87-100.

[91] S. Zhou, M. Stumm, K. Li, and D. Wortman, "Heterogenous Distributed
Shared-Memory," IEEE Transactions on Parallel and Distributed Systems,
vol. 3, pp. 540-554, 1992.

[92] K. M. Zuberi, P. Pillai, and K. G. Shin, "EMERALDS: a small-memory real-
time microkernel " in Proceedings of the 17th ACM symposium on Operating
systems principles, Kiawah Island, South Carolina, 1999, pp. 277-299.

 I

9. Appendix A – Glossary

Cell Short name for the Cell Broadband Engine.

DMA
Direct Memory Access. DMA transfers are transferred that do not involve the CPU
once they are started.

DPSRA
Direct Problem State Register Access. Stands for access to the SPE registers by the
PPE through DMA transfers.

EIB Element Interconnect Bus. Connect all the elements of the Cell Broadband Engine.
FlexIO Input/output interface of the Cell Broadband Engine.
Itanium Intel architecture used for high computational power servers or clusters.
LS Local Store. It is a 256KB memory owned by each SPE.

MFC
Memory Flow Controller. Manage all memory transfer between the LS and other
LS or main memory.

MPI
Message Passing Interface. It is an efficient communication protocol often used in
clusters.

PC Program Counter. Address of the instruction currently being executed

SMP
Symmetrical Multi Processing. Common approach to multi-processing where a
copy the kernel is executed on each processor

SP Stack Pointer.
SPE Synergistic Processor Elements.
PPE PowerPC Processor Element.

X86
32bit processor architecture introduced by Intel and used in most of the personal
computers.

X86_64 64bits architecture. Successor of the x86 architecture.
XDR Extreme Data Rate. XDR is a type of Random Access Memory.
Virt-K Virt-K is the implementation developed during this project.

 II

10. Appendix B – Terms of reference

10.1 Background Information

In the late years, microprocessor founders have had trouble following the

 Moore Law. Not only they have had they to face physical problems due to

 the size of transistors but also what is called the “Memory Wall” [88] due to

 the memory latency and cache misses. Numerous new ideas have been tried to

 solve this problem but only few have. Classical multicore architectures, like

 Intel Core Duo, have managed to achieve greater performances but memory

 accesses are being more critical than ever.

However as described by [35], STI, the union of Sony, Toshiba and

 IBM, have worked since 2000 on this problems and have found a working

 solution: the Cell Broadband Engine, commonly called Cell. The results of the

 Cell will not be discussed here but they can be found in [86].

The Cell thus has many interesting aspects. It has been made as a replacement

for personal computers architectures (x86, x86_64) but is also a powerful parallel

calculator. It is being currently used in the Playstation 3, but also in multiprocessors

computers and soon in clusters.

Parallel computing has been a research subject for many years now, but its

application to real-time systems has always been problematic as many processors

often imply large power consumption. The Cell may change this as IBM clearly

indicates in its official articles, [35] among others, “The Cell processor should provide

extensive real-time support”. Further references to real-time support can also be found

in the technical documentation of the Cell (i.e. [29]). STI has also announced,

according to [80], a lighter version of the Cell for embedded hardware and

 real‐time usage

The few research done on real-time for the Cell have been on efficient

computing algorithm as MPEG compression, ray tracing, terrain rendering, but none

of them has clearly answered the question of the feasibility of a real-time operating

system for the Cell.

 III

10.2 Project Outline

During this project, it will be tried to answer the question of the feasibility of a

real-time kernel for the Cell, which is a heterogeneous multicore processor. More

than proposing an implementation, further performances tests will be used to judge

about the Cell’s efficiency as a real-time processor.

Our research hypothesis will be:

“Can an effective hard real-time scheduler be implemented for the Cell

Broadband Engine?”

The main criteria of a hard real-time scheduler, which will be used to test its

effectiveness, are:

• It has to allow task creation.

• It must be able to schedule task for concurrent processing.

• Its performances should be predictable and bounded.

• It should provide primitives for safe concurrent processing (mainly

synchronisation primitives)

It would be really difficult, even impossible to write a complete kernel within

the project deadlines. It would be possible to use an existing kernel, and adapt it to

the Cell, but it would require a lot of time to port and most of its code would have to

be rewritten to fit the requirements. Therefore, Linux, which has already been ported

on the Cell, will be used as a development platform, to run a “virtual kernel”. Linux

drivers and few low-level functions will be used to simplify the development process

and be able to focus on scheduling and synchronisation. The main problem of this

approach is that Linux kernel is not real-time. Some part of our virtual kernel will not

thus real-time but results might still be available.

The kernel that will be developed will focus on achieving high performances

(i.e. better than Linux and existing real-time kernel on other architectures) using new

scheduling and synchronisation functions. A hard real-time scheduler will be

implemented, and be provided semaphores. Further scheduling algorithms and

synchronisation means (mutexes, conditions) may be discussed in the report.

 IV

The implementation and its effectiveness will be tested through simulation by

running case studies. It will be judged effective if the case study run successfully and

the achieved latencies are acceptable for a real-time kernel.

To fully understand the implication of this project, a bit of background on the

Cell processor and real-time kernel is needed.

10.3 Review of the Cell Broadband Engine

10.3.1 Heterogeneous multicore architecture

Heterogeneous multicore processors are quite new on the processor markets.

Before them, except a few exceptions, only the regular single core processor, the

homogeneous multicore processors like the AMD Opteron [46] and heterogeneous

multi processors were available.

Multi-processors (and parallel systems) have played quite a big role in the past.

Even with the computing power of a processor following the Moore Law or so, the

need for power will always exists. Even with the last generation of processors being

thousands times more powerful than their predecessors 20 or 30 years ago, they still

do not fit every purpose. Modelising climate or physicals phenomena requires much

more power than a processor can bring. Parallel processing was and still is the only

way to reach such computing power requirements. Moreover, as described in [77],

parallel architectures have many advantages as reliability, low cost (compare to an

eventual equivalent single processor.

Some of these advantages have been lost when moving to multi-processor

parallel architectures to multi-core architectures, but the computation power and

reliability are still there.

As said earlier, parallel architectures have been a research subject for many

years. Many results may be used in this project as multi-core processors can be seen

as a multi-processor parallel architecture on-a-chip.

 V

10.3.2 The Cell Broadband Engine Architecture

The Cell, as described by [32], consists of 9 cores on a single chip. One of them

is the PPE (PowerPC Processor Element), and the other eight are advanced

computational units called SPE (Synergistic Processor Units). All these processors are

linked by a high data-rate bus called EIB (Element Interconnect Bus). The SPEs and

the EIB are the keys to the Cell success as they provide a considerable amount of

computational power without neglecting the memory wall problem.

10.3.2.1 PowerPC Processor Element (PPE)

According to [29], the PPE being the central element of the Cell is in fact an

enhanced PowerPC 64bits core. Thus, using well known technology, STI has

guaranteed some compatibility with existing softwares.

In the current Linux version running on the Cell, the PPE is the only core used

by default. However softwares can choose to send tasks to the SPEs. The problem

with this solution is that, although all the previous PowerPC software can be

executed without any changes, a lot of the SPE computation time is wasted as few

software are using them.

The main role of the PPE, fixed by the design [32], is to host the operating

systems as it has full access to all hardware (Interrupt Controller, EIB

Management...).

10.3.2.2 Synergistic Processor Elements (SPE)

The SPE is a highly advanced 64 bits computational unit using SIMD (Single

Instruction Multiple Data).

The main difference between PPE and SPE, more than the restricted instruction

set of the SPE, is the way they access memory [27]. Where the PPE uses the same

 VI

standard access (cache L1 and L2), the SPE has its own local memory. As

[29]indicates, each SPE owns a 256 kilobytes Local Store.

Another critical difference is that a PPE accesses the memory “on the fly” which

means the data are retrieved from memory to the cache at the moment they are

needed. However, the SPE owns a MFC (Memory Flow Controller) which can retrieve

data asynchronously. The MFC is given a list of memory area to load or store and will

do it as soon as the hardware makes it possible. Therefore, the SPE can pre-fetch the

data it’ll need before it actually needs it. This may seems really simple, but it is a

solution to the memory wall as mentioned earlier. The memory latency is not a real

problem anymore as the SPE does not have to wait for its data to keep running. To

be more precise, data being prefetch, the program will not encounter cache misses,

and then run faster. In the case of a single process running on a SPE (isolated and

non-pre-empted), it is possible to calculate exactly response time within the SPE. As

every instruction as a know execution time and so does the Local Store access, the

execution time of a function can be calculated at a SPE cycle precision.

Moreover, it is fully possible to imagine a pre-allocation of data in the Local

Store having a task ready to run has soon as a signal (intern or external event)

arrives, avoiding a costly context switch. By sharing the Local Store, several processes

could be stored at the same time. Context switch in this case would only require

saving the different register.

For a soft real-time usage, the same principle could be applied adding paging

functions to send back some processes to the main memory if needed. Context

switch would still be less costly than copying the full Local Store to the main memory

and the average response time would stay quite low.

 VII

10.3.2.3 Current Researches

The Cell and its new architecture, first produced in 2005, is still a subject of

research.

More than looking for efficient algorithm using its full potential as [37],[58] and

[6], many laboratories are working on possible implementations and how to enhance

the current Linux for Cell.

[39]have worked on implementing MPI (Message Passing Interface) on the Cell.

MPI is necessary to work efficiently on multiprocessor Cell computers. They have

implement blocking point-to-point communications on the current Linux for that. But

more than that, the techniques they used are interesting for SPE synchronisation

(mutexes semaphores). It will be discussed in more details later in this review.

10.4 Real-Time Operating Systems

What real-time operating system is will not be discussed here; instead we will

focus on an efficient implementation of it on the Cell

The concept of heterogeneous multicore is new, so there have not been many

research done on it. However, even if all the cores are in a single chip, the Cell can be

seen has a heterogeneous multiprocessor, thus, giving access to many results from

completed researches. Most of them will not be cited here as the ideas they bring are

really technical and will not be used before the programming stage.

According to [78] there are only three ways to modelise multiprocessor systems:

shared-memory multiprocessors, message-passing multicomputer and wide area

distributed systems. The third one cannot be considered for the Cell as it is a single

chip; however the two other approaches are valid.

Although[15] and their AsymOS operating system have proven it is possible and

efficient to run different part of the operating system on each core, using MPI, it is not

appropriate for the Cell. The SPE have not been designed to run an operating system

due to their limited access to the hardware and the high-delay context changes.

To consider the Cell as a shared-memory multiprocessor seems to be the most

efficient approach.

 VIII

10.4.1 Kernel

As it was said earlier, SPEs are not supposed to run any part of the operating

systems, including the kernel, hence the kernel has then to run entirely on the PPE. It

seems also acceptable, in certain condition, to run a micro kernel on a SPE to manage

local scheduling and synchronisation. It would increase context switches but decrease

substantially communication between the PPE and SPE which may prove useful in

specific applications.

A problem Linux faces is the lack of usage of the SPE, as they are only used by

Cell specific application through threads, the father process always running on the

SPE. In this case, to maximise the Cell usage, the SPEs may be used fully.

An interesting approach is to run a real on the PPE, and all the time-constrained

software on the SPEs. Some unconstrained software could also be run on the PPE if

needed.

The main problem of this approach is the synchronisations and the access to

Operating System resources. However it allows the kernel to run power consuming

scheduling algorithms as most of the PPE computing time is reserved to the kernel.

Such optimized algorithm may not be proven useful to a hard real-time kernel where a

pre-emptive round-robin may be preferred. But for soft real-time, power-consuming

algorithm, it may improve the overall performances.

10.4.1.1 Synchronisation

As described by [38], in any multi-tasked OS, it is necessary for the kernel to

provide synchronisation means, so that the different softwares executing at the same

time can exchange information and be prevented from writing a shared memory area

at the same time.

These functions are usually operated by the kernel using specific CPU

instructions [78]. The Cell provides such function support but only on the PPE.

In the current Linux implementation, the SPEs execute each of these functions

by sending system calls to the PPE which do the real treatment. This solution has

 IX

drawbacks, as it needs the PPE execution to be interrupted each time one of the eight

PPE needs access to these functions.

It is important to understand that synchronisation is critical in a multicore

system and that every single micro-second gained will have a huge impact on the

overall performances.

The work of [39] mentioned earlier gives new solutions to these problems. In

specific case, blocking point-to-point communications between SPEs can be used. It

will then only uses CPU time of the concerned SPE and achieve higher performances.

[1], and many others, propose other efficient techniques for locking access to

part of the memory. Some of them may be used to enhance the previous algorithm.

Some research will be done on the Atomic Cache Unit of the SPE which provide

an atomic way to write in the memory and be instantly shared with the other SPE.

In this kernel, we will only implement semaphores as they also cover mutexes.

However, with a few tweaks to scheduling, the same algorithms could be used for

conditions.

10.4.1.2 Operating System Resources

More than synchronisation, processes need access to resources: mainly access to

the peripherals and their interrupts, timers, etc.

Linux here once again uses system calls to have the PPE doing the work. And

once again, it is working but not in the most efficient way.

According to [32] indicates, the Cell architecture does not provide hardware

support to route interruptions to a SPE directly. Therefore it is necessary that the PPE

deals with them. However, the PPE does not have to treat more than the interrupts.

The Cell integrates communication channels between the SPE and the PPEs and can

thus “forward” the interrupt to the concerned SPE. It is important that only one SPE is

linked to an interrupt as a peripheral cannot be accessed by more than one core at the

same time.

This system allows deferring the peripheral treatment only to the concerned

core, leaving the other unchanged and being more efficient. This is only possible

 X

when one single core needs access to the peripheral. If the peripheral is shared, the

PPE would have to do the treatment as Linux does already.

In this kernel, we will not implement a real-time access to resources. Linux

functions and drivers will be used to access the peripherals. Therefore, the kernel I/O

will not be real-time.

10.4.2 Real-time Scheduling

Scheduling is the most critical part of an operating system and even more

critical in the case of a real-time one. The scheduler has to choose an execution order

of the processes depending on their priority, and their deadlines.

Scheduling on a single CPU has now been used for years and there are many

optimal algorithms like the round-robin described by [42]. However, scheduling on a

multi-processor is a much difficult problems.

Most of the multi-processor (or multicore) systems like the one used by [15]

uses Symmetrical Multi-Processing (SMP) kernels which means each processor has its

own kernel and each of them does it own scheduling, falling back to the single CPU

scheduling case.

As [83] described, scheduling on shared-memory multiprocessor implies taking

in account the cache (here the local stores), as it is really time-consuming to reload all

the data when a processes is moved to another SPE.

[62] propose an interesting approach of scheduling: instead of taking only

processor requirements into consideration, they consider the whole resource

consumption (CPU, peripherals, mutexes). They provide a heuristic algorithm which

can dynamically schedule a set of tasks. As said earlier, the software would run only

on SPE and the kernel on the PPE. This algorithm is thus really interesting as the PPE

has unused computation power which can be used for an efficient scheduling. As said

earlier, such algorithms may not prove useful in a hard real-time kernel; therefore they

will not be implemented in this kernel. However they may be discussed as an

improvement for a more generic purpose of the Cell.

 XI

10.5 Research areas

• Heterogeneous Multicore Architectures

• Distributed Operating Systems

• Scheduling for Multicore Processors

• Shared-memory Multiprocessor Synchronisation

10.6 Aims

Implementing a hard real-time kernel for the Cell Broadband Engine

10.7 Objectives

• Research and discuss Linux implementation on SPEs.

• Specify and develop a virtual kernel using Linux as a non real-time hypervisor.

• Research, design and implement a scheduling algorithm to manage the SPEs

• Research, design and implement semaphores for the SPEs

• Test system performances and compare to existing real-time kernels.

• Research and discuss possible algorithms to achieve higher performances and

more generic purpose.

10.8 Relationship to course

This project covers the major area taught in the courses. It requires a good

understanding of real-time kernel as well as concurrent programming.

It will involve conception, programming in C and Assembler, scheduling

analysis and much more different skills acquired during the two taught semesters.

 XII

10.9 Resources constraints

As the Cell is not accessible directly, the whole project will be done with a free

simulator provided by IBM. The development and testing of the software will be

realised on a Linux workstation running Fedora Core 7.

Due to the power requirements of the simulator, the work will be realised on a

rack server I own. Thus, it may prove difficult to show a live demonstration of my

kernel during the viva. A solution will be searched later, in agreements with both

markers.

10.10 Proposed Outline of Dissertation

1. Introduction

2. Subject overview

2.1. Parallel computers

2.2. Cell Broadband Engine

2.3. Real-Time Kernel

3. Research and design: Theoretical implementation

3.1. Interfacing with Linux

3.2. Task allocation

3.3. Scheduling

3.4. Semaphores

4. Results of the implementation

5. Performances

5.1.1. Results

5.1.2. Analysis of weak points

5.1.3. Comparison with Linux

6. Discussion of possible enhancements

6.1.1. Achieving higher performances

6.1.2. Achieving a more general purpose

7. Possible usage

8. Conclusion

 XIII

Note: Sub points have been used in this outline to regroup points matching a

same topic. However, depending on the project, some of them may become proper

chapters.

 XIV

10.11 Schedule of activities

Task# Task Duration Beginning End Predecessors

1 Get ready for development 6 days 19/05/08 26/05/08

2

Install Fedora core 7, Cell SDK, Development tools

and Simulator 2 days 23/05/08 26/05/08

 3 Read IBM Documentation about the Cell 4 days 19/05/08 22/05/08

 4 Interfacing with Linux 8 days 27/05/08 05/06/08 1

5 Analyse Linux implementation on the SPEs 3 days 03/06/08 05/06/08

6

Analyse how to implement the virtual kernel

within Linux 5 days 27/05/08 02/06/08

 7 Virtual kernel structures 10 days 06/06/08 19/06/08 4

8 Research and design the kernel structures 7 days 06/06/08 16/06/08

 9 Implement the basic structures 3 days 17/06/08 19/06/08 8

10 Scheduling 15 days 20/06/08 10/07/08 7

11

Research and design task allocation and

scheduling algorithms 10 days 20/06/08 03/07/08

 12 Implement scheduling 5 days 04/07/08 10/07/08 11

13 Synchronisation 15 days 11/07/08 31/07/08 10

14 Research and design semaphore algorithm 5 days 11/07/08 17/07/08

 15 Implement semaphores 10 days 18/07/08 31/07/08 14

16 Tests (includes program writing) 5 days 01/08/08 07/08/08

 17 Test SPE Scheduling 3 days 05/08/08 07/08/08 12

18 Test SPE synchronisation 2 days 01/08/08 04/08/08 15

19 Performance Tests 7 days 08/08/08 18/08/08 13;16

20 Run performance tests 3 days 08/08/08 12/08/08

 21 Analyse test 4 days 13/08/08 18/08/08 20

22 Find weaknesses 2 days 13/08/08 14/08/08

 23 Compare to Linux implementation 2 days 15/08/08 18/08/08

 24 Overall analysis 10 days 19/08/08 01/09/08 19

25 Analyse Cell potential for real-time application 3 days 19/08/08 21/08/08

 26 Discuss possible usage of the Cell 2 days 22/08/08 25/08/08 25

27 Research and discuss possible enhancements 5 days 26/08/08 01/09/08

 28

 29 Write report 76 days 19/05/08 01/09/08

	Dissertation title:
	Acknowledgements
	Abstract
	Contents
	Introduction
	Hypothesis
	Aims
	Objectives
	Dissertation organization

	Cell Broadband Engine and Real-Time Kernel
	The Cell Broadband Engine Architecture
	The Cell Broadband Engine
	PowerPC Processor Element (PPE)
	Synergistic Processor Elements (SPE)
	Element Interconnect Bus (EIB)
	Other Elements
	Further details

	Real-Time Kernel
	Task Management
	Real-Time scheduling
	Synchronization function

	A Kernel Architecture for the CBE
	General design
	Task Allocation
	Scheduling
	Synchronization – Semaphores
	Hardware implementation
	Priority Inversion
	Task dispatching

	Interfacing with Linux

	Software Implementation
	Software architecture
	PPE – Kernel
	SPE – User-space

	Implementation specifics
	LS Memory organization
	PPE/SPE communications
	Conditions

	Software status
	Development Environment
	Development Status
	Optimizations
	Functional test

	Known problems
	Context Restore
	Semaphores and ACU
	Shared variables

	Performances
	Timing Analysis
	Context switch
	Semaphore Acquisition
	Semaphore Release

	Performances Tests
	Test Case
	Timing solution
	Results

	Weak Points and Possible Enhancements
	Complex scheduler
	Context Switches
	Semaphore Locks

	Shared variables

	Conclusion
	BIBLIOGRAPHY
	Appendix A – Glossary
	Appendix B – Terms of reference
	Background Information
	Project Outline
	Review of the Cell Broadband Engine
	Heterogeneous multicore architecture
	The Cell Broadband Engine Architecture
	PowerPC Processor Element (PPE)
	Synergistic Processor Elements (SPE)
	Current Researches

	Real-Time Operating Systems
	Kernel
	Synchronisation
	Operating System Resources

	Real-time Scheduling

	Research areas
	Aims
	Objectives
	Relationship to course
	Resources constraints
	Proposed Outline of Dissertation
	Schedule of activities

		2008-08-26T20:59:28+0100
	Nicolas Morey-Chaisemartin

